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Abstract. In this paper, we present an agent model based on computation with  
polychronous groups on spiked neural networks, that is able to learn to return 
to known initial situations, without any guidance.

1. Introduction

The recent developments on biologically inspired spiked neural networks [Gerstner and 
Kistler 2002] along with plasticity models such as STDP [Froemke and Yang 2002] 
allows the exploration of a new way to store and manipulate information spread over 
networks, exploring a feature known as polychronous groups, suggested by [Izhikevich 
2006].

In this  kind  of  neural  network,  neurons  fire  (or  spike)  when their  activation 
reaches a defined threshold. Incoming synapses carry potentials from neurons that just 
fired, or spiked, according to a weight, that determines how much of the firing potential 
will be transported to the connected neurons.

The synaptic weights vary in accordance to some plasticity model, such as STDP 
(spike  timing  dependent  plasticity),  where  the  weights  increase  if  the  pre-synaptic 
neuron fires just before the post-synaptic one, and decrease if it fires afterward.

A key feature that allows the emergence of neuronal groups is the existence of 
nonzero propagation times in the synapses, meaning that once a neuron fire, a post-
synaptic neuron will only receive the potential change after some specified propagation 
time. Another important requisite for having polychronous groups is the existence of 
excitatory and inhibitory neurons, with different firing equations, in a way that once the 
global network activation rate is over a threshold, and a certain amount of excitatory 
neurons are activated, they reach most of the inhibitory neurons, causing the network to 
reset. This process iterated over time causes the network to have a rhythmic behavior.

The polychronous groups can be understood as assemblies of neurons, that fire 
in the same temporal pattern, repeatedly in accordance to network inputs. Groups are 
dynamic entities due to the plasticity model. As soon as the synaptic weights begin to 
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change, some groups disappear and new ones emerge. If the same inputs are presented 
over and over, it is observed that the number of groups attain an equilibrium [Izhikevich 
2006], as the network “aligns”  to the given inputs. In this sense, then, groups can be 
understood as “memories” in the network, as the network learns to associate this groups 
to sets of inputs and coordinate them with related outputs.

So  far,  polychronous  network  has  been  studied  for  theoretical  purposes 
[Izhikevich 2006] [Maier and Miller 2008] and reservoir computing [Paugam-Moisy et 
al. 2008] implementations. However, embedding this kind of network in an agent in a 
simulated virtual world had not yet been attempted.

Our contribution in this work is to simulate one such network embedded into an 
agent that roams a virtual environment in search of food, receiving stimuli about its own 
energy level and from the environment (the nearest food direction), and being able to 
choose the direction to turn. Without any kind of rule to indicate that the agent should 
feed,  we  study  if  the  use  of  Izikevitch  network,  STDP  plasticity  and  the  initial 
conditions will influence the behavior of the agent and if some “food searching” strategy 
will emerge.

2. Agent Model

The simulated agent is a blue tetrahedron that starts in the center and moves about with 
constant speed in a flat 20 x 20 field containing 50 randomly placed small green spheres 
that represent food. The agent also has an energy level, that starts at 1.0 and gradually 
decreases towards 0.0. Nothing special happens if the energy reaches zero.

As soon as the agent touches some food, its energy level is increased and the 
food is replaced with another one placed at random on the field. The agent is blocked 
from leaving the field by invisible walls.

The agent  has  two sensors,  the first,  called  directional  sensor,  indicates  the 
angle towards the nearest food object, with a 30 degrees arc and a radius of 10 units of 
distance. The second sensor is called  energy sensor and measures the current energy 
level of the agent. A challenging aspect of this kind of simulation is converting the 
inputs from the environment to neural activation patterns, and convert neural patterns 
into output values to command the effectors. Our approach, not detailed here, was based 
on the way the desert scorpion finds its prey, using 8 neurons located in the tips of its 
legs, that measures oscillations from waves in the sand [Stürzl  2000].  Using only 8 
excitatory and 8 inhibitory neurons, in a way that each 3 inhibit the opposite one, it is 
possible to convert an incoming wave into a firing pattern. In our case, with a simple 
adaptation of the same algorithm, we convert numbers  representing angle or energy 
levels to a linear pattern of activation of neurons representing inputs and convert timed 
activations into numbers in the reverse way.

To act in the world, the agent may choose the angle to turn using its directional 
actuator, that received a value from 0.0 to 1.0 indicating the turning direction, in a 30 
degrees arc.

Each of the sensors and actuators comprise a defined set of neurons, usually 5 
for  each  that  can  be  activated  in  patterns  depending  on  the  inputs  or  the  network 
activity.

2630



3. Experimental Settings

To study the effect of Izhikevich network and STDP plasticity on the behavior of the 
agent, we define several scenarios. We want especially to attest if by setting the energy 
initially to its maximum value, it will induce the behavior of “feeding” in the agent, or 
moving toward the food. On the other hand, if by setting the agent's initial energy to the 
minimum value would induce the behavior of avoiding food.

Below is a list of the used simulation scenarios:

– Rand: as a benchmark, we simulate an agent which moves entirely at random 
(Random scenario).

– IZN:  a random 180 neurons network is  generated using Izhikevich's neurons 
equations,  with 80% of excitatory neurons and 20% of inhibitory ones. Each 
neuron has 30% of chance of being connected to each one of the others. This 
network  is  simulated  for  10  min  simulated  time.  This  scenario  has  STDP 
disabled.

– IZS:  This  scenario  uses  IZN as  a  base,  however  having  the  STDP  feature 
enabled. 

– ENEMAX: This is similar to IZS, but starts with maximum energy for 10 min, 
after that the energy is allowed to change normally for another 10 min.

– ENEMIN: To compare with ENEMAX, this scenario starts with energy fixed at 
zero for 10 min, then enable variation for another 10 min.

4. Results and Conclusions

Each of the experiments was run 20 times using 20 different random seeds. The same 20 
seeds were used for all the scenarios, allowing similar initial  food setup and energy 
progression. All comparisons below were done on the averages of the 20 simulations.

We observe that by enforcing initial values for a long period on the network we 
can direct the polychronous group selection, thus allowing some form of training for the 
agent.

Simply by having STDP active, the groups start  to change and take shape in 
accordance to the inputs. For that reason it is not enough to have the energy start at 
maximum and then immediately begin to decrease, because as we can observe in the 
Rand scenario, the energy quickly tends back to low values, and the agent will end up in 
fact learning to remain in that low energy values.

This is why we developed the scenarios ENEMAX and ENEMIN, that enforce 
the “desired” energy input for an extended period, allowing the network to stabilize and 
select the best groups that are compatible with that energy input.
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With the simulation scenarios used, we can observe in Figure 1a that has STDP 
enabled right from the start of the simulation(IZS) will actually behave less efficiently 
than without STDP at all (IZN), because since the energy level will drop significantly 
right at start,  the STDP will  strengthen the polychronous groups associated to lower 
energy input patterns, inducing the agent to select output angles to avoid food.

On the other hand, on Figure 1b, when keeping the energy level at maximum for 
10 minutes (ENEMAX), after a brief adaptation period, up to the inflection point in 
ENEMAX(around the middle part of the graph), the STDP reenforces groups related to 
full energy input patterns, in this way, most of the agent's output actions will tent to 
direct him towards food, so that the high energy levels can be maintained.

When  the  energy is  kept  at  minimum  for  10  min  (ENEMIN),  however,  the 
behavior is even worse than IZS, because the network was taught to remain in lower 
energy states (bu reenforcing the lower energy polychronous groups), then the agent will 
learn to move away from food to remain in these states.

This shows that Izhikevich networks with STDP can be used as an alternative 
agent model, with abstract trainable inputs patterns that can direct the agent behavior.

5. Future Work

Presently, we are working on improving the performance of the simulator to be able to 
do even more tests and experiments to confirm our findings in larger scale networks and 
in other less random spatial configurations.

Another interesting possibility, aimed for future releases, is to include poisonous 
food (that reduces the energy level by an amount) to see how the agents react and what 
kind of learning behavior could be observed. If the agent learns to avoid poisonous food, 
we could be close to understanding how higher level concepts can be expressed within a 
spiked neural network.

This research continues as a collaboration between the Cognitio Research team 
at the Polytechnic School in University of São Paulo and researchers at LRI in INRIA 
Saclay Île-de-France, enabling interchange and joint work, considered relevant to both 
sides.

Figure 1. For each time step t, average energy level of the agent between t and 
the end of the simulation (end=10mn). In (a) we compare results for Rand(black, 
thin), IZN(blue) and  with IZS(red). In (b) we compare ENEMAX (light blue) and 

ENEMIN(light red) scenarios, only showing the evolution of energy after it 
becomes variable.
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