
Towards automating proofs for model-based software
engineering

D. Déharbe1 , P. Fontaine2 , A. Martins Moreira1 , S. Merz2 , A. Santana de Oliveira3

1Universidade Federal do Rio Grande do Norte
Natal, RN, Brazil

2LORIA–INRIA
Nancy, France

3Universidade Federal Regional do Semi-Árido
Mossoró, RN, Brazil

{anamaria,anderson,david}@dimap.ufrn.br,

{Pascal.Fontaine,Stephan.Merz}@loria.fr

Abstract. Model-based approaches are commonly used to engineering software
for safety-critical applications. Several artifacts, such as abstract specifications,
formal refinements, and assertions at the implementation level require compu-
tational support for formal reasoning activities. Delivering formal verification
tools that address such reasoning activities in an automated, trustable and flexi-
ble fashion remains a scientific challenge. Researchers from LORIA and UFRN
have been collaborating to address this challenge and are now developing an
automated theorem prover targeted at trustable software verification efforts.

1. Introduction
The software industry needs effective technologies to assist the design and development
of software for safety-critical applications. This domain of application has its own safety-
related standards, where strict requirements impose mathematical rigor and traceability to
the development activities.

Model-driven design approaches such as the B method [1] have been used by the
industry for more than a decade to address these needs. Such methods require that the
designers produce a formal model of the requirements. The satisfiability and coherence
of this model is then verified using theorem provers to establish the validity of verification
conditions. This first model may then be used as a reference to establish the correctness
of more concrete design artifacts, known as refinements. Theorem provers again play an
essential role in this step, they ensure the overall soundness of the development with re-
spect to the initial requirements. Support for these methods comes in the form of fully or
partially automated provers, with varying degrees of efficiency, depending on the expres-
siveness of the specification language, as well as the maturity of the employed theorem
proving technologies.

For the last few years, the collaboration between UFRN and LORIA has been
focusing on the design of a state-of-the-art theorem prover that caters to the needs of such
model-based software engineering methods (Section 2 of the paper gives a brief account

2495



of the history the collaborations between the institutions). Details on the theorem prover
currently under development are then given in Section 3. Finally, Section 4 provides a
perspective on the scientific challenges that the authors aim to tackle in the future.

2. A short account of previous collaborations
Collaboration between UFRN and LORIA (encompassing the Cassis, Mosel, and Pro-
theo/Pareo research teams) in the area of formal approaches to software development
started formally in 2001 with the FERUS project, coordinated by Anamaria Martins Mor-
eira on the Brazilian side and by Hélène Kirchner on the French side. This project was
proposed in response to a joint call of CNPq and INRIA and addressed the reuse of
software specification components in the algebraic realm. In addition to short scientific
missions of the different partners, during the FERUS project UFRN lecturer Anamaria
Martins Moreira realized a one-year long sabbatical at LORIA and her then master stu-
dent Anderson Santana de Oliveira also realized a four-month stay at LORIA. Anderson
Santana was later the recipient of a grant from CAPES to realize a full doctoral study
at LORIA, starting in 2004. In 2008, Anderson Santana defended his thesis and after a
post-doc stay at UFRN was hired as a lecturer by UFERSA.

In 2002, UFRN lecturer David Déharbe visited LORIA for a sabbatical stay with
Michael Rusinowitch. This stay initiated a fruitful collaboration in the area of automatic
theorem proving, involving Silvio Ranise, Christophe Ringeissen, and recently in particu-
lar Pascal Fontaine. This collaboration was formalized in the second joint UFRN/LORIA
project under the sponsorship of CNPq and INRIA: Da Capo (2005-2008). Since then
several former UFRN students initiated their doctoral studies at LORIA: Judson Santos
Santiago (Cassis group, concluded1), Cláudia Fernanda Oliveira Kiermes Tavares (Pareo
group, ongoing), Diego Caminho Barbosa de Oliveira (Mosel group, ongoing).

3. The veriT solver
The collaboration between Loria and UFRN in the area of automatic theorem proving
has led to the active development of a common tool through which our research results
are validated and made available to the larger community. Initially known as haRVey [6]
whose first version was made available in 2002, it was essentially a research platform for
combining reasoning tools. Under the DaCapo project, we began in 2007 to re-factor the
code of haRVey and greatly enhance its capabilities. The new tool is called veriT solver;
the release of a usable and stable version is imminent.

The veriT solver is best classified as a Satisfiability Modulo Theories (SMT)
solver. It takes a predicate logic formula as input and checks if the formula is satisfi-
able or not, that is, if there is an interpretation that makes the formula true. The validity
problem is trivially translated to the satisfiability problem by taking the negation of the
formula; a formula is valid (always true) if and only if its negation is unsatisfiable. Most
formal methods and verification techniques heavily rely on checking the satisfiability or
the validity of formulas. In addition to giving a verdict on the satisfiability of its input,
veriT is able to produce a proof of its result; such proof may be then checked or reused
by external components. This feature is important as it makes it possible to certify the
results produced by veriT.

1Judson Santos Santiago has also been hired as a lecturer by UFERSA.

2496



The input language of veriT is a first-order language with uninterpreted and inter-
preted symbols based on the SMT-LIB format [13]. Uninterpreted symbols are particu-
larly useful to model arrays, or functions that are partially or totally unknown, whereas
interpreted symbols are essential to model the usual data structures used in computer sys-
tems such as integers, rationals, real numbers or lists. As a distinguishing feature, veriT
includes a complete first-order generic prover (at the moment, the E-prover [14]; inclu-
sion of SPASS [16] is planned). This feature makes it possible for the user to define his
own data structures by writing axioms in logic that characterize the data structures and
the operators working on them

Figure 1 depicts the architecture of veriT. First veriT reads the input formula,
written in the SMT-LIB format [13]. Currently veriT implements two syntactical exten-
sions to this format: lambda expressions and macros. The parser rewrites the instances
of these constructs applying beta reduction and macro expansion. The result of this pre-
processing may be output to a file in the SMT-LIB format without these extensions. Sec-
ond, veriT computes the conjunctive normal form of the formula and stores the corre-
sponding clauses in SAT-solver MINISAT [7], a propositional satisfiability solver, that
implements a modern and efficient version of the DPLL algorithm [3]. The SAT-solver
attempts to find a propositional model of the formula, i.e. a satisfiable set of literals. If no
such model is found, then the formula is unsatisfiable. Otherwise, it is propositionally sat-
isfiable. The set of literals is then incrementally input to the theory reasoning engine. The
theory reasoning engine may conclude that the set of literals is satisfiable in the combina-
tion of first-order theories; in that case the original formula is satisfiable and the execution
stops with this result. Another possible outcome is that the set of literals is unsatisfiable
in the theory; in that case, a clause is added to the propositional SAT-solver to discard
this set of literals from the set of possible models. Finally, the third possible outcome is
that the theory reasoning module cannot reach a conclusion; in that case, it may provide
lemmas that are translated to additional clauses that further constrains the set of possi-
ble models. In the last two cases, the SAT-solver is applied to the updated set of clauses
and the process repeats until no more propositional models can be built (the formula is
unsatisfiable), or no more lemmas can be generated (the solver is not able to decide the
satisfiability of the input formula). For some logics, veriT is also able to produce a proof
of the result, which consists of a sequence of instances of basic deduction rules that can
be then checked by a third-party.

The theory reasoning module is itself composed of a decision procedure for the
theory of equality with uninterpreted functions, based on congruence closure [12], a de-
cision procedure for the so-called “difference logic”, a fragment of real and integer arith-
metics [4], quantifier instantiation heuristics, and an automated deduction engine based
on resolution and superposition [15]. Such module [5] implements a variant of the Nelson
and Oppen combination technique [11], based on the propagation of variable equalities.
Moreover, to avoid overflow and underflow errors in the manipulation of arithmetic val-
ues, veriT uses the GNU MP [9] libraries.

The language of veriT totally covers several sections of the competition of SMT
solvers (SMT-COMP [2]). Although the efficiency of veriT is not yet at the level of tools
winning those sections of the competition, its performances are on a par with serious
general-purpose SMT solvers. We evaluated veriT, CVC3 and Z3 (both using the lat-

2497



veriT

file /
s tandard input

yes/no/unknown
[proof]

parser
+

reescrita

fi le

parser
+

rewriting
normal
formte

rm
s

(D
A
G

)

SAT
solver
(DPLL)

cl
a
u

se
s

p
ro

p
os

it
io

n
a
l

m
od

el
s

sa
t 

/
((

u
n

sa
t.

/u
n

k
n

ow
n

)+
cl

a
u

se
)

[p
ro

of
]

equality 

arithmetics

deduction

literals

decision and
semi-decision
procedures:

theory reasoning

co
m

b
in

a
ti

on
 e

n
g
in

e

sat /
equalit ies/

((unsat./unknown.)+
clauses)
[proof]

Figure 1. Software architecture of veriT

Solver QF UF QF UFIDL QF IDL QF RDL all
(6656) (432) (1673) (204) (8965)

veriT 6323 332 918 100 7673
CVC3 6378 278 802 45 7503
Z3 6608 419 1511 158 8696

Figure 2. Experimental comparison of veriT with CVC3 and Z3

est available version in February 2009) against the SMT-LIB benchmarks for QF IDL,
QF RDL, QF UF and QF UFIDL (June 2008 version) using an Intel R© Pentium R© 4 CPU
at 3.00 GHz with 1 GB of RAM and a timeout of 120 seconds. The Figure 2 gives, for
each solver, the number of completed benchmarks.

The veriT solver has been successfully used for several verification tasks on lock-
free algorithms, and to check refinements in model-based software engineering approach
such as B and Circus. The tool is publicly available and distributed under the BSD open-
source license. It may be downloaded at http://www.verit-solver.org.

Planned enhancements include better quantifier handling, hierarchic theories, new
decision procedures for arithmetic fragments, and better integration of the tool within
proof assistants.

4. Perspectives and conclusion

Our motivation for the development of the veriT solver is that the formal development
of software should be supported by automated reasoning modules. As the solver gains
maturity, another important task remains: the automation provided by veriT should be
made available inside popular tool platforms supporting formal methods, such as the B
method, TLA+, as well as the Isabelle and Coq proof assistants. We have several pre-
liminary works along that line. The veriT solver has already been integrated as a plug-in
within the Isabelle proof-assistant [8], some investigation to integrate veriT inside the Coq
proof-assistant has been done, and veriT has been used successfully to discharge simple
but very tedious proof obligations from B models [10].

In this context it is crucial to provide the users with syntactical criteria to identify
the fragment of the language of their favorite formal method for which automatic proof

2498



support is possible. This is not trivial, since syntactical transformations may often be used
to convert proof obligations that occur naturally in popular formal methods towards the
input language of automated solvers. For example, proof obligations for the B method are
typically formulas using set theoretic concepts. A straight translation—using axioms for
set theory—into the language of first-order or SMT provers leads to poor results. However
veriT is able to handle some set formulas very efficiently, by understanding sets as their
characteristic predicates and rewriting the usual operators on sets as boolean operators
accordingly. Not every formula can be handled in this way, and notably, quantifiers over
sets are not allowed in the original formula. Even in those cases, it is sometimes possible
to use clever instantiations to obtain formulas that fall into the fragment handled by veriT,
and it would be interesting to automatically recognize such cases. The same recognizers
could also be applied to sub-goals in interactive proof assistants, thus simplifying the
required expertise. As a last resort, a user aware of this automation capability could
guide the manual proof to minimize the number of interactions necessary to prove a given
verification condition.

The development of the veriT solver and its use as a component for tool sets
supporting formal methods are at the core of the long term fruitful cooperation between
the UFRN and LORIA teams.

References
[1] J.-R. Abrial. The B-Book. Assigning Programs to Meanings. Cambridge University Press,

1996.

[2] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories
Competition. In Computer Aided Verification (CAV), pages 20–23, 2005.

[3] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[4] D. C. B. de Oliveira. Deciding difference logic in a Nelson-Oppen combination frame-
work. Master’s thesis, PPgSC/UFRN, 2007.

[5] D. C. B. de Oliveira, D. Dharbe, and P. Fontaine. Combining decision procedures
by (model-)equality propagation. In Brazilian Symposium on Formal Methods
(SBMF2008), pages 51–66. Editora Grfica da UFBA, EDUFBA, 2008.

[6] D. Déharbe and S. Ranise. Bdd-driven first-order satisfiability procedures (extended ver-
sion). Research report 4630, LORIA, 2002.

[7] N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications of
Satisfiability Testing, volume 2919 of LNCS, pages 333–336. Springer, 2003.

[8] P. Fontaine, J.-Y. Marion, S. Merz, L. P. Nieto, and A. Tiu. Expressiveness + automation
+ soundness: Towards combining SMT solvers and interactive proof assistants. vol-
ume 3920 of Lecture Notes in Computer Science, pages 167–181. Springer-Verlag,
2006.

[9] T. Granlund. GNU MP: The GNU multiple precision arithmetic library, 4.1.4 ed, 2004.
http://gmplib.org/.

[10] E. S. Marinho, V. de Medeiros Jr, D. Déharbe, B. Gomes, and C. Tavares. A ferramenta
batcave para a verificação de especificações formais na notação b. In XXII Simpósio

2499



Brasileiro de Engenharia de Software. XV Sessão de Ferramentas do SBES., pages
7–12.

[11] G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM Trans-
actions on Programming Languages and Systems, 1(2):245–257, 1979.

[12] G. Nelson and D. Oppen. Fast decision procedures based on congruence closure. Journal
of the ACM, 27(2):356–364, 1980.

[13] S. Ranise and C. Tinelli. The SMT-LIB standard : Version 1.2, Aug. 2006.

[14] S. Schulz. System Description: E 0.81. In Proc. of the 2nd IJCAR, Cork, Ireland, volume
3097 of LNAI, pages 223–228. Springer, 2004.

[15] S. Schulz. System Description: E 0.81. In Proc. of the 2nd IJCAR, Cork, Ireland, volume
3097 of LNAI, pages 223–228. Springer, 2004.

[16] C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. System description:
Spass version 3.0. In Conference on Automated Deduction (CADE), volume 4603
of LNCS, pages 514–520. Springer, 2007.

2500




