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Abstract. In this paper we present how constraint based applications may ben-
efit from software engineering modeling approaches. Extension of constraint
handling rules are currently developed as a general rule based constraint pro-
gramming environment including constraint solving, deduction, default reason-
ing, abduction, belief revision, and planning tasks and methods. But it still
lacks general application modeling methods in order to be used in large scale
software products. We show how the current collaborative project C4RBCP be-
tween UFPe and INRIA brings a contribution to this objective.

1. Introduction
In this paper we show how Component-Based Software Engineering (CBSE) may give
a boost to the use of Rule Based Constraints Programming (RBCP) for large software
engineering applications. These two areas bring complementary principles to the general
issue of software reuse for Automated Reasoning (AR).

Constraint Logic Programming supports a great ambition for programming: the
one of making of programming essentially a modeling task, with equations, constraints
and logical formulas. Rule-Based Constraint Programming (RBCP) is the combination of
rule systems and constraint resolution. There are huge repositories of global constraints
[Beldiceanu et al. 2008], including constraints with rules. [Fages and Martin 2008] intro-
duce a general purpose rule-based modeling language for constraint programming, named
Rules2CP which allows in particular to express search strategies and heuristics as prefer-
ence orderings on variables, values, and and/or formulae.

Another paradigm is Constraint Handling Rules (CHR) originally developed by
[Fruehwirth and Abdennadher 2003]. Several extensions of constraint handling rules are
currently developed as a general rule based constraint programming environment includ-
ing constraint solving, deduction, default reasoning, abduction, belief revision, and plan-
ning tasks and methods. Despite of these many approaches and improvements of model-
ing with constraints, constraints programming is not used as much as it could be. It still
lacks of general modeling methods in order be effectively used for modeling very large
software applications.

Component-Based Software Engineering (CBSE) [Atkinson et al. 2002] brings
the idea of developing any software in two largely orthogonal steps. The first, design
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for reuse step identifies services recurrently needed in a variety of contexts and encap-
sulate them into components that clearly separate the hidden services realizations from
their public specifications as a provided interface. Other components can use the services
provided by this interfaces by connecting to their associated ports. This offers them the
possibility to outsource by design part of their own provided services realizations. This
part must be publicly specified as required interfaces with associated ports. The second,
design with reuse step of CBSE can then assemble at low-cost a variety of complex ser-
vices by just connecting component ports with matching required and provided interfaces.

These CBSE concepts of components, interfaces, ports and assembly are currently
only supported by imperative programming platforms (whether object-oriented or not)
such as .Net or EJB. They are not supported by RBPC platforms, making constraint solv-
ing rule bases monolithic. Our project is to investigate how these CBSE concepts can be
adapted to the RBPC language CHRV (Constraint Handling Rules with Disjunctive bod-
ies), a simple yet powerful extension of CHR, and implemented in the adaptive CHRV

engine CHROME (CHR Online Model-driven Engine) currently under development at
CIn-UFPE.

After presenting some aspects of constraint programming and of CBSE, we
present some results and perspectives resulting from a collaboration between the INRIA
research team “Constraints” and the UFPe-CIN “SE” team.

2. Constraints Programming

Constraint Programming is a field born during the mid 70s from Logic Programming
[Kowalski 1974, Colmerauer and Roussel 1996], Linear Programming coming from Op-
erations Research [Schrijver 1998], and Constraint Propagation techniques coming from
Artificial Intelligence [Marriot and Stuckey 1998, Rossi et al. 2006]. Its foundation is the
use of relations on mathematical variables to compute with partial information. The suc-
cesses of Constraint Programming for solving combinatorial optimization problems, from
pure problems to real problems in industry or commerce, owe much to the bringing of,
on the one hand, new local consistency techniques, and, on the other hand, declarative
languages which allow control on the mixing of heterogeneous resolution techniques:
numerical, symbolic, deductive and heuristic.

Several constraint solvers paradigms have been developed, in particular the Con-
straint Handling Rule (CHR) approach [Fruehwirth and Abdennadher 2003] which com-
bines in an elegant and effective way the declarativeness of logic programming and
the flexibility and empowerment of combining hybrid solvers. In particular CHR
offers a good base to specify and implement Rule-Based Constraint Programming
(RBCP). CHR has been proven successful in over 100 applications (see WebCHR:
http://www.cs.kuleuven.be/ dtai/projects/CHR/).

The INRIA “Constraints” team is developing SiLCC (Linear Concurrent Con-
straint programming) an imperative and concurrent constraint programming language
based on a single paradigm: the one of Vijay Saraswat’s concurrent constraint program-
ming extended with constraint systems based on Jean-Yves Girard’s Linear Logic. In the
late 90’s he developed the theory of this extension and is now working on its implemen-
tation. The LCC paradigm offers at the same time a theoretical framework for analysis,
and a valuable guide for practical language design and implementation.
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The UFPe group worked on an extension of CHR which shares many similarities
with SiLCC, called CHRV . It is a versatile RBCP language that can serve as a unify-
ing basis to represent constraint solving, deduction, default reasoning, abduction, belief
revision, and planning tasks and methods.

In parallel, INRIA contributed to develop tools for constraint solvers behavior
analysis, in particular by the OADymPPaC project [Deransart & al 2004] (2001-2004).
The recent progresses made on the theory and implementation of traces in CP (definition
of the generic trace format GenTra4CP) put it into a firm ground for developing tracers for
rule based systems. The figure 1 illustrates variable domain reduction during a 40 queens
puzzle resolution.

Figure 1. An example of visualisation of constraint propagation (40 queens prob-
lem, OADymPPaC project)

3. Component-Based Software Engineering

Components are the leading cost-cutting software reuse technology. A component encap-
sulates the realization of a service set and makes them accessible from outside through a
provided interface with its access port. It may delegate part of this realization to exter-
nal components by specifying them as required interfaces, each one with its access port.
Applications and larger component realizations can be quickly assembled from smaller
components by connecting the required ports of client components to the provided ports
of server components with matching associated interfaces. In this regard, type systems
[Russell and Norvig 2003] provide a first way to ensure some level of consistency in the
assembling. Furthermore, each operation of a component’s provided and required inter-
faces can be specified in detail using pre and post conditions. By providing detail service
specifications while completely hiding their realizations, components with matching spec-
ifications but distinct realizations can be plugged out and in without affecting the rest of
the assembly.

A component can possess a publicly visible state lifecycle: only a subset of its
provided interface operations can be called in a given state and these calls can in turn alter
this state. Each component in an assembly can follow its own independent thread, using
its ports as asynchronous communication channels with the other components. The Ko-
brA method [Gross 2004] prescribes how to leverage UML to develop component-based
artifacts throughout the entire software lifecycle from requirements, to design and testing.
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The .Net and J2EE platforms provide sophisticated component assembly implementation,
deployment facilities.

The long term topic of our project is thus the introduction of components to the
most practical and challenging variety of RBCP: adaptive solving that integrates con-
straint simplification, propagation and search, and provides an insightful visual solving
trace to ease debugging and evolution of constraint programs.

4. Recent results

CHRV has emerged as a versatile knowledge representation language, usable for an un-
paralleled variety of automated reasoning tasks: constraint solving, optimization, classi-
fication, subsumption, classical deduction, abduction, truth-maintenance, belief revision,
belief update and planning. [da Silva et al. 2008] add default reasoning to this list, by
showing how to represent default logic theories in CHRV . It is also discuss how to lever-
age this representation together with the well-know correspondence between default logic
and Negation As Failure (NAF) in logic programming, to propose an extension CHRV ;naf

of CHRV allowing NAF in the rule heads.

[Fages et al. 2008] introduce a modular version of the Constraint Handling Rules
language CHR, called CHRat for “modular CHR with ask and tell”. Any constraint de-
fined in a CHRat component can be reused both in rules and guards in another CHRat
component to define new constraint solvers. Unlike previous work on modular CHR, this
approach is completely general as it does not rely on an automatic derivation of condi-
tions for checking entailment in guards, but on a programming discipline for defining both
satisfiability (tell) and entailment (ask) checks by CHRat rules for each constraint. The
operational and declarative semantics of CHRat are defined, a transformation of CHRat
components to flat CHR programs is provided, and the preservation of the semantics is
proven. They give examples of the modularization of classical CHR constraint solvers
and of the definition of complex constraint solvers in a modular fashion.

5. Conclusion

INRIA and UFPe teams have started a regular cooperation since 3 years in particular
through the C4RBCP project, founded by FACEPE, INRIA and MAEE French Ministry.
Our cooperation proved to be extremely fruitful supported by complementary objectives.

Both teams share a common interest and previous researches in RBCP and CHR.
However, they bring complementary expertise to different aspects of the issues to inves-
tigate in the proposed project. The INRIA Rocquencourt team specific expertise fields
in constraint programming are theoretical foundations, trace generation and visualiza-
tion, as well as modules, and type systems, two precursors of software components. The
CIn-UFPE specific expertise fields are model-driven engineering , software architecture,
component-based modeling, and object-oriented implementation of RBCP engines. This
motivates common works.

Furthermore cross cooperation with other European country [Robin et al. 2007]
suggests to look for European cooperation. This motivated the authors to elaborate a
STREP proposal submitted in the FP7 ICT 2007-3.2.2 framework.
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