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Abstract. The uncertainties inherent to distributed systems, such as unpre-
dictable message delays and process failures, gave place to a great research
effort in the past, where numerous solutions to fault-tolerance mechanisms have
been proposed with a variety of guarantees and underlying system assumptions.
The advent of new classes of distributed system applications (such as social net-
works, security, smart objects sharing etc) and technologies (VANET, WiMax,
Airborn Networks, DoD Global Information Grid, P2P) are radically chang-
ing the way in which distributed systems are perceived. Such emerging systems
have a composition, in terms of processes participating to the system, that is
self-defined at run time depending, for example, on their will to belong to such a
system, on the geographical distribution of processes etc. In this paper, we point
to some of the challenges that have to be addressed by fault-tolerance solutions
in the light of such a new dynamicity dimension, and that can motivate future
collaborative work.

1. Introduction
A distributed system is usually characterized by a set Π = {p1, p2, ..., pn} of processes
sited on possibly distinct networked computers and a set χ = {c1, c2, ..., cm} of communi-
cation channels. Networked computers form arbitrary network topologies and processes
communicate by using a communication protocol that implements process-to-process
communication. Such process-to-process communication defines communication chan-
nels that may include several intermediate network level communication links. There-
fore, a communication channel ci connecting processes pi and pj defines a ”is able to
communicate”relation between pi and pj , rather than a network level link connecting
the machines that host pi and pj . The actual behavior or properties observed in the dis-
tributed system, which defines a distributed system model, results from the way processes
and channels are implemented by the underlying operating and communication systems.
Whether processes and channels can operate within certain known time bounds, and how
and when processes and channels can fail, are the usual uncertainties that designers have
to face when solving application problems in distinct models. That is why being able
to solve such problems despite failures (i.e., being Fault-Tolerant) has been considered
a major research challenge. In this context, the abstractions of distributed consensus
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and concurrent registers are important building blocks from which fault-tolerance mech-
anisms such as state machine replication can be constructed. Basically, a consensus pro-
tocol guarantees that distributed processes can unanimously agree on a proposed output
value, whereas concurrent registers provide distributed processes with certain guarantees
on read/write operations. However, the possibility of solving these problems depends
on the uncertainty level assumed in a given system model. For instance, let us consider
the synchronous (or time-based) and asynchronous (or time-free) models. Under process
crashes and reliable channels, the reliable multicast problem is solvable in both models
[Lynch 1996, Hadzilacos and Toueg 1993], whereas distributed consensus can be solved
in the synchronous model, but not in the asynchronous model [Fisher et al. 1985].

The advent of new classes of distributed system applications (such as social net-
works, security, smart objects sharing etc) and technologies (VANET, WiMax, Airborn
Networks, DoD Global Information Grid, P2P) are radically changing the way in which
distributed systems are perceived, adding even more uncertainties that lead to more dy-
namic distributed system models.

Such emerging systems have a composition, in terms of processes participating to
the system, that is self-defined at run time depending, for example, on their will to belong
to such a system, on the geographical distribution of processes etc. Therefore, a common
denominator of such emerging systems is the dynamicity dimension related to the pro-
cesses that actually make the system at a given time, which introduces a new source of
unpredictability inside a distributed system. Such a dynamicity reflects also on the avail-
able system resources that dynamically changes following system compositions. This in
turn requires applications to be adaptive, for instance, to less network bandwidth or de-
graded Quality-of-Service (QoS). Ideally, in these highly dynamic scenarios, adaptiveness
characteristics of applications should be self-managing or autonomic.

In this paper, we point to some of the challenges that need to be addressed by
distributed consensus and concurrent register solutions in the light of such a new dynam-
icity dimension, and should motivate future collaborative work of the Franco-Brazilian
community working in distributed computing. The reminder of this extended abstract is
structured as follows. In section 2 is presented related work with emphasis on our previous
collaborative work on this field. Challenges that should be of primary importance for the
Franco-Brazilian research community interested in distributed computing are presented
in section 3.

2. Related and Previous Work

Among the faul-tolerant problems, distributed consensus has received a great deal of at-
tention because it can be used as a basic building block to solve several class of prob-
lems that includes group membership, atomic commitment, atomic broadcast, among
others. Motivated by the consensus impossibility result in asynchronous systems, re-
searchers have proposed a number of partially synchronous distributed system models that
introduce different levels of synchrony into the asynchronous system, where the consen-
sus problem is solvable [Dwork et al. 1988, Dolev et al. 1987, Cristian and Fetzer 1999,
Lamport 1998, Chandra and Toueg 1996]. Among them, the failure detectors mechanism
proposed by Chandra and Toueg[Chandra and Toueg 1996] has received special attention
because of its simplicity, encapsulating the synchrony needed to achieve consensus by
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defining axiomatic properties associated with different classes of failures detectors.

In [Hurfin et al. 1999] we have defined a general framework that simplifies the
system designer work. Such framework can be used to solve a variety of classes of dis-
tributed agreement problems based on failure detectors. Following the same paradigm of
failure detectors, we defined consensus protocols based on a decentralized communication
pattern and observed that a tradeoff has to be found between the number of communica-
tion steps and the number of exchanged messages, by automatically switching between
a centralized and a decentralized communication pattern [Greve et al. 2000]. The notion
of round is at the core of failure detector based Protocols. To be more tolerant with
regard to the message transfer delays, we introduced the notion of cycle of K rounds
[Hurfin et al. 2001].

In [Gorender et al. 2007] we have explored the notion of a hybrid model to solve
the uniform consensus problem, where we assume that the underlying system is capable of
providing distinct QoS communication guarantees. Because timely and untimely channels
may exist in parallel, the underlying system model can be hybrid in space (in this sense,
similar to TCB [Verı́ssimo and Casimiro 2002]), but, differently from TCB, the nature of
such hybridism does not require that all processes are interconnected by timely channels
(which would characterize a synchronous wormhole).

In recent work, we have investigated the implementation of regular regis-
ters in asynchronous dynamic message-passing systems, where the dynamicity rate
(i.e., frequency of joins and leaves of the processes) is constant [Baldoni et al. 2009].
In another recent work, we focused on the support for self-management behav-
ior, that allows an application to dynamically adapt to a given system configuration
[Andrade and de Araújo Macêdo 2009]. These research efforts represent a preliminary
endeavor towards models and mechanisms that fulfill the requirements of modern dy-
namic distributed systems.

3. New Challenges
The new classes of highly dynamic distributed system applications and technologies pose
a tremendous challenge to fault-tolerant systems. The main difficulty stems from the fact
that in distributed systems the implementation of fault-tolerance mechanisms (such as
replication) depends on coordinated actions from the system processes. As the system
composition changes dynamically, it is difficult to assure that the necessary resources will
be kept long enough in order to guarantee the prescribed fault-tolerance properties (for
instance, that redundancy level is kept satisfactory).

So, the main challenges consists in defining appropriate abstractions suited to
dynamic systems, and related self-management mechanisms. Those abstractions should
be locality-based and should take into account notions such a presence detector (similar
to failure detectors). From a computational point of view, an insight into population
protocols [Angluin et al. 2007] should be of primary importance and could be the starting
point of promising research inside the realm of distributed computing.
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