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Abstract. A perfect hash function (PHF) is an injective function that maps keys
from a setS to unique values. Since no collisions occur, each key can be re-
trieved from a hash table with a single probe. A minimal perfect hash function
(MPHF) is a PHF with the smallest possible range, that is, the hash table size
is exactly the number of keys inS. Differently from other hashing schemes,
MPHFs completely avoid the problem of wasted space and wasted time to deal
with collisions. The study of perfect hash functions started in the early 80s, when
it was proved that the theoretic information lower bound to describe a minimal
perfect hash function was approximately1.44 bits per key. Although the proof
indicates that it would be possible to build an algorithm capable of generating
optimal functions, no one was able to obtain a practical algorithm that could be
used in real applications. Thus, there was a gap between theory and practice.
The main result of the thesis filled this gap, lowering the space complexity to
represent MPHFs that are useful in practice fromO(n log n) to O(n) bits. This
allows the use of perfect hashing in applications to which it was not considered
a good option. This explicit construction of PHFs is something that the data
structures and algorithms community has been looking for since the 1980s.

1. Introduction

The need to access items based on the value of a key is ubiquitous in Computer Science.
Some types of databases are updated only rarely, typically by periodic batch updates.
This happens for most data warehousing applications (see [Seltzer 2005] for more exam-
ples and discussion). In applications where the key set is fixed for a long period of time
the construction of a minimal perfect hash function can be done as part of the prepro-
cessing phase. For example, On-Line Analytical Processing applications use extensive
preprocessing of data to allow very fast evaluation of certain types of queries. More for-
mally, given astatickey setS ⊆ U of sizen from a key universeU of sizeu, where each
key is associated with satellite data, the question we are interested in is: what are the data
structures that provide the best tradeoff between space usage and lookup time?

Perfect hashingis a space-efficient way of creating compact representation for a
static setS of n keys. For applications with successful searches1 the representation of a
keyx ∈ S is simply the valueh(x), whereh is a perfect hash function (PHF) for the set
S of values considered. The word “perfect” refers to the fact that the function will map

1A successful searchhappens when the queried key is found in the hash table and anunsuccessful search
happens otherwise.
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Figure 1. (a) Perfect hash function (b) Minimal perfect hash function.

the elements ofS to unique values (is identity preserving).Minimal perfect hash function
(MPHF) produces values that are integers in the range[0, n − 1], which is the smallest
possible range. Figure 1(a) illustrates a PHF and Figure 1(b) illustrates an MPHF.

The study of perfect hash functions started in the early 80s, when it was proved
that the theoretic information lower bound to describe a minimal perfect hash function
was approximately1.44 bits per key [Mehlhorn 1984]. Although the proof indicates that
it would be possible to build an algorithm capable of generating optimal functions, no
one was able to obtain a practical algorithm that could be used in real applications. Thus,
there was a gap between theory and practice. The main result of the thesis filled this
gap, lowering the space complexity to represent minimal perfect hash functions that are
useful in practice fromO(n logn) to O(n) bits. This allows the use of perfect hashing in
applications to which it was not considered a good option. This explicit construction of
PHFs is something that the data structures and algorithms community has been looking
for since the 1980s, as said by a reviewer of a prior submission: “Taking into account the
fact that people had been looking for such constructions all the time since the 1980s, this
is a big achievement and might make the central result of the paper a candidate for...”.

The remainder of this paper is organized as follows. Section 2 discusses the main
contributions. Section 3 discusses the impact of the results. Section 4 presents the con-
clusions. Section 5 discusses some ongoing work and future directions.

2. Key Contributions
The attractiveness of using PHFs and MPHFs depends on the following is-
sues [Hagerup and Tholey 2001]: (i) the amount of CPU time required for generating
the functions; (ii) the space requirements for generating the functions; (iii) the amount of
CPU time required by the functions for each retrieval; and (iv) the space requirements of
the description of the resulting functions to be used at retrieval time.

No previously known algorithm performs well for all these requirements. Usu-
ally, the space requirement for generating the functions is overlooked. That is why the
algorithms in the literature cannot scale for key sets on the order of billions of keys. Also,
as mentioned before, there is a gap between theory and practice on perfect hashing algo-
rithms [Botelho 2008]. So, the main contributions of the thesis are:

1. We present a simple, practical and highly scalable perfect hashing algorithm that
takes into account the four aforementioned requirements [Botelho et al. 2007,
Botelho and Ziviani 2007, Botelho et al. 2009b]. When the input key set fits in
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the internal memory available, it becomes an internal randomAccess memory al-
gorithm, referred to asRAM algorithmfrom now on; otherwise, it becomes an
external memory algorithm, referred to asEM algorithmfrom now on.

2. We provide a scalable parallel implementation of the EM algorithm, referred to as
parallel external memory(PEM) algorithm from now on [Botelho et al. 2008a].

3. We present techniques that allow the generation of PHFs and MPHFs based on
random graphs containing cycles [Botelho et al. 2005].

4. We show that the PHFs and MPHFs we have designed can now be used for
applications in which they were not considered a good option in the past. In
[Botelho et al. 2008b, Botelho et al. 2009a] we show that MPHFs provide the best
tradeoff between space usage and lookup time when compared to other hashing
schemes for indexing internal memory when static key sets are involved.

5. We have created the C Minimal Perfect Hashing Library [Botelho et al. 2006],
referred to asCMPH Library from now on, that is a free software library available
under the GNU Lesser General Public License (LGPL). The library was conceived
for two reasons. First, we would like to make available our algorithms to test their
applicability in practice. Second, we realized that there was a lack of similar
libraries in the open source community.

We now describe the key contributions in the order they appear in the original
thesis document [Botelho 2008]. For the sake of space, we do not provide extended details
about each contribution. Please check the thesis document for details about the algorithms
and implementations related to each contribution.

2.1. Random Access Memory and External Memory Algorithms

The RAM algorithm [Botelho et al. 2007, Botelho et al. 2009b] works on acyclic ran-
dom graphs given by function values of uniform hash functions on the keys ofS (see
[Botelho 2008] for the definition of uniform hashing). The idea of basing perfect hash-
ing on acyclic random graphs is not new, see e.g. [Majewski et al. 1996], but we pro-
ceed differently to achieve a space usage ofO(1) bits per key rather thanO(log n) bits
per key. We user hash functions and acyclic hypergraphs with hyperedgese(x) =
{h0(x), . . . , hr−1(x)}, for x a key, but add two tricks: (i) to keyx assign an element
hi(x)(x) of e(x) such that the assignmentx 7→ hi(x)(x) is one-to-one onS; (ii) use a linear
equation to calculate the indexi(x) ∈ [0, r − 1] from x. This makes it possible to ob-
tain a space usage ofc(r)⌈log(r + 1)⌉ bits per key, for certain numbersc(2), c(3) . . .; the
value that minimizes the cost per key isr = 3. The connection to acyclic random graphs
allows us to perform a tight analysis and to optimize the space usage constant by using
appropriate succinct data structures in a theoretically sound way.

The EM algorithm [Botelho and Ziviani 2007, Botelho et al. 2009b] is a result of
a careful engineering process that uses a number of techniques from the literature to allow
the generation of PHFs or MPHFs for sets on the order of billions of keys. The EM
algorithm is the first step aiming to bridge the gap between theory and practice on perfect
hashing. Therefore, it is the first algorithm that can be used in practice, has time and space
usage carefully analyzed without unrealistic assumptions, and scales for billions of keys.
We have designed two versions of the EM algorithm. The first one uses the hash functions
described in [Botelho 2008], which guarantee that the EM algorithm can be made to work
for every key set. The second one uses faster and more compact pseudo random hash
functions proposed in [Jenkins 1997], referred to as heuristic EM algorithm, or simply
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HEM algorithmfrom now on, because it is not guaranteed that it can be made to work for
every key set. However, limited randomness often suffices in practice [Alon et al. 1999],
and the HEM algorithm has worked for all key sets we have applied it to.

The RAM and EM algorithms generate in linear time PHFs and MPHFs that are
evaluated inO(1) time. The space requirements to describe the resulting functions de-
pend on the relation betweenm andn. For m = n, the space usage is approximately
2.62n for the RAM algorithm and approximately3.3n bits for the EM algorithm. For
m = 1.23n, the space usage is approximately1.95n bits for the RAM algorithm and ap-
proximately2.7n bits for the EM algorithm. In all cases, this is within a small constant
factor from the information theoretical minimum of approximately1.44n bits for MPHFs
and0.89n bits for PHFs, something that has not been achieved by previous algorithms,
except asymptotically for very largen.

The main practical perfect hashing algorithms we found in the literature to com-
pare the RAM, EM and HEM algorithms with are: Botelho, Kohayakawa and Zi-
viani [Botelho et al. 2005] (referred to as BKZ), Fox, Chen and Heath [Fox et al. 1992]
(referred to as FCH), Majewski, Wormald, Havas and Czech [Majewski et al. 1996] (re-
ferred to as MWHC), and Pagh [Pagh 1999] (referred to as PAGH). For the MWHC algo-
rithm we used the version based on random hypergraphs withr = 3. We did not consider
the one that uses random graphs withr = 2 because it is shown in [Botelho et al. 2005]
that the BKZ algorithm outperforms it.

Table 1 shows that the RAM (forr = 3), EM and HEM algorithms are the fastest
ones to generate the functions and the resulting functions are the most compact. The
performance of both EM and HEM algorithms is quite surprising once they use external
memory at generation time and the other algorithms do not. However, as the key set
is stored in external memory, all the other algorithms scan the whole key set everytime
a failure occurs, whereas both EM and HEM algorithms simply scan the whole key set
once and maps it to a set of fixed length fingerprints. Also, the whole key set is broken
into buckets with at most 256 keys and the memory is accessed in a less random fashion,
implying in fewer cache misses.

Table 1. Comparison of the algorithms for constructing MPHFs considering gen-
eration time and storage space, and using n = 3, 541, 615 for the two collections.

Algorithms Generation Time (sec) Storage Space

4-byte Integers URLs Bits/Key Size (MB)

RAM r = 2 11.39 ± 1.33 16.73 ± 1.89 3.60 1.52
r = 3 5.46 ± 0.01 6.74 ± 0.01 2.62 1.11

EM 5.86 ± 0.17 7.68 ± 0.22 3.31 1.40
Heuristic EM 5.56 ± 0.16 6.27 ± 0.11 3.17 1.34

BKZ 9.22 ± 0.63 11.33 ± 0.70 21.76 9.19
FCH 2, 052.7 ± 530.96 2, 400.1 ± 711.60 4.22 1.78

MWHC 5.98 ± 0.01 7.18 ± 0.01 26.76 11.30
PAGH 39.18 ± 2.36 42.84 ± 2.42 44.16 18.65

Figure 2 illustrates that the both versions of the EM algorithm is able to generate
an MPHF for a key set of 1.024 billion keys in less than 46 minutes, using a commodity
PC. There is no algorithm in the perfect hashing literature that gets even close.

2.2. Parallel External Memory Algorithm

The Parallel External Memory (PEM) algorithm [Botelho et al. 2008a] allows to dis-
tribute the construction, description and evaluation of the resulting functions, which is
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Figure 2. Number of keys in S versus generation time for the EM algorithm and
the heuristic HEM algorithm. The solid line corresponds to a linear regression
model for the generation time.

of fundamental importance when the key set size increases considerably. For instance,
using a 14-computer cluster the PEM algorithm generates an MPHF for1.024 billion
URLs in approximately 4 minutes, achieving an almost linear speedup. Also, for14.336
billion 16-byte random integers evenly distributed among the 14 participating machines
the PEM algorithm outputs an MPHF in approximately50 minutes, resulting in a perfor-
mance degradation of20%. To the best of our knowledge there is no previous result in
the perfect hashing literature that can be implemented in a parallel way to obtain better
scalability and performance than the results presented by the PEM algorithm.

2.3. MPHFs and Random Graphs with Cycles

The reason to use random graphs with cycles comes from the fact that the functions are
generated faster and are more compact than the ones generated based on acyclic random
graphs. This is because both the generation time and the space usage of the resulting
functions depend on the number of vertices in the random graphs and the acyclic ones are
more sparse. That is, the ratio between the number of vertices and number of edges must
be larger than two.

Our result presented in [Botelho et al. 2005] improved the space requirement of
one instance of the algorithms proposed in [Majewski et al. 1996]. Both algorithms are
linear onn, but our algorithm runs59% faster than the one in [Majewski et al. 1996],
and the resulting MPHFs are stored using half of the space. The resulting MPHFs still
needO(n log n) bits to be stored. As in [Majewski et al. 1996], the algorithm assumes
uniform hashing and needsO(n) computer words of the Word RAM model to construct
the functions. Recently, using ideas similar to the ones presented in [Botelho et al. 2005],
we have optimized the version of the RAM algorithm that works on random bipartite
graphs to output the resulting functions40% faster when cycles are allowed. These results
are presented in [Botelho 2008, Chapter 6] and are being prepared for publication.
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2.4. Indexing Internal Memory with MPHFs

We have shown that MPHFs provide the best tradeoff between space usage and
lookup time when compared to other hashing schemes for indexing static key sets
in internal memory [Botelho et al. 2008b]. It was not the case in the past because
the space overhead to store MPHFs wasO(log n) bits per key for practical algo-
rithms [Majewski et al. 1996]. However, the MPHFs generated with the RAM algo-
rithm [Botelho et al. 2007, Botelho et al. 2009b] require approximately2.6 bits per key of
space to describe the function and can be evaluated inO(1) time, and completely changed
that scenario. In [Botelho et al. 2009a] we extended our prior study in two aspects. First,
we have designed an optimization of the MPHFs that considerably improves their lookup
time performance. Second, we have surveyed the main hashing schemes available in the
literature and added four other methods to our comparative study.

We have shown that other hashing schemes cannot outperform minimal perfect
hashing considering lookup time even when the hash table occupancy is lower than20%.
An MPHF requiring just 2.6 bits per key of storage space is able to store sets in the order
of 10 million keys in a 4 MB CPU cache, which is enough for a large range of applications.
Besides, the space overhead of minimal perfect hashing is within a factor ofO(log n) bits
lower than other hashing schemes.

2.5. CMPH Library

The CMPH Library [Botelho et al. 2006] contains a professional implementation of our
main results and is the state-of-the-art software for perfect hashing. We have received
very good feedbacks about the practicality of the library. For instance, it has received
more than3, 300 downloads (July 2009) and is incorporated by two Linux distributions:
Debian and Ubuntu This have contributed to make the results of this thesis becoming
widely used in a short period of time, which usually takes much more time.

3. Impact of the Results

Three published papers have 21 citations (excluding self-citations) and one of them has
more than 145downloadsin the ACM Portal in the last 12 months. Two papers that
cite our results mention that we have the first really practical perfect hashing result in
20 years of research [Edelkamp and Sulewski 2008]. As mentioned before, the CMPH
library has more than3, 300 downloads up to July 2009 and is incorporated by two Linux
distributions: Debian and Ubuntu, and has been used for applications that were inviable in
the past. For instance, the results are being used into the products of two big companies
hosted in California, United States: (i) Symantec Incorporation, and (ii) Data Domain
Incorporation. Due to the impact of the results in the products of Data Domain Inc.
(company with a net revenue exceeding 270 million dollars in2008 and an expected
growth of 100% in 2009), Fabiano C. Botelho was offered a position and will join the
team of the company from August2009 on. Besides, some of the knowledge acquired in
the doctorate process was used in a book [Ziviani and Botelho 2006] that has sold more
than1, 500 copies.

4. Conclusions

In the thesis here summarized we have designed a time efficient, highly scalable and near-
optimal space perfect hashing algorithm. In a 64-bit architecture our algorithm is able to
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deal with key sets of size up ton = 1.8 × 1021. The resulting functions are evaluated
in O(1) time. The space necessary to describe the functions takes a constant number of
bits per key, and it is within a factor of two from the information theoretical minimum of
approximately1.44n bits for MPHFs and0.89n bits for PHFs, something that has not been
achieved by previous algorithms, except asymptotically for very largen. The algorithm
is theoretically well understood and is the first one with theoretical properties that scale
for billions of keys and can be used in practice. The algorithm is suitable for a distributed
and parallel implementation, as the one presented in [Botelho et al. 2008a], which is able
to generate an MPHF for a set of14.336 billion 16-byte integer keys in 50 minutes using
14 commodity PCs, achieving an almost linear speedup. We have shown that MPHFs
provide the best tradeoff between space usage and lookup time when compared to other
hashing for indexing internal memory when static key sets are involved.

5. Ongoing and Future Work

We strongly believe that our results on perfect hashing and the advent of solid state disks,
which are built based on flash memory technology, have a perfect match to improve the
performance of computer systems in several contexts. For example, this has been suc-
cessfully done in [Edelkamp and Sulewski 2008]. So, we are working on very promis-
ing applications in the Information Retrieval field. Besides, we are working on three
more papers to be submitted in 2009. The first paper is a joint work with Professor
Nicholas C. Wormald from the Department of Combinatorics and Optimization at Uni-
versity of Waterloo, the second one is a journal paper that extends the results presented
in [Botelho et al. 2008a], and the third one is a journal paper that extends the results pre-
sented in [Botelho et al. 2005].
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