
Extensible Symbolic Debugging for Distributed Object
Systems

Giuliano Mega1 e Fabio Kon2

1Dipartimento di Ingegneria e Scienza dell’Informazione
Università degli Studi di Trento – Trento, TN – Italia

2Departamento de Ciência da Computação
Universidade de São Paulo (USP) – São Paulo, SP – Brasil

mega@disi.unitn.it, kon@ime.usp.br

http://www.ime.usp.br/ ˜ giuliano/dissert.pdf

Abstract. After over thirty years of distributed computing, debugging dis-
tributed applications is still regarded as a difficult task. While it could be argued
that this condition stems from the complexity of distributed executions, the fast
pace of evolution witnessed with distributed computing technologies has also
played its role by shortening the lifespan of many useful debugging tools. In
this Masters thesis summary, we briefly summarize our incursion in building
an extensible tool which puts distributed threads and symbolic debuggers to-
gether, resulting in a simple and useful debugging tool/technique. The tool is
extensible and backed by a technique supported by features that are common
to synchronous-call middleware implementations, making them suitable candi-
dates for surviving technology evolution.

1. Introduction

Debugging distributed applications can be a remarkably difficult task. While it is true that
part of these difficulties stem from the inherent complexity of distributed executions, both
the diversity and the fast pace of evolution of distributed computing technologies (includ-
ing hardware, operating systems, and middleware) have played a prominent role in mak-
ing the lifespan of debugging tools extremely short. Indeed, we are not the first ones to
identify heterogeneity as a major contributing factor to the slow progress witnessed with
mainstream debugging tools. Hondroudakis had done it before [Hondroudakis 1995], as
had Cheng [Cheng and Hood 1994], and many other researchers before us. Be as it may,
the end result is the noticeable lack of a set of useful, effective debugging tools, even on
mainstream technology and middleware platforms.

The main contribution of this work is the research, design and implementation
of a simple, useful, andportable debugging tool. This debugging tool is supported by
a simple instrumentation technique, and can be applied to a large and important class
of distributed systems – the distributed object systems. One of the main characteris-
tics of our debugging technique is that it is conceived to run on top of features com-
monly present in Distributed Object Computing (DOC) middleware, making it suitable
for heterogeneous environments, and resilient to technology evolution. Other relevant
contributions of this work include a formal characterization fordistributed threads(DTs)

73



[Mega and Kon 2007] (discussed in Sec. 2), and a comprehensivesurvey, in Portuguese,
on existing tools and techniques for debugging of concurrent systems [Mega 2008].

The rest of this text presents a short summary of the main contribution of this
work – our debugging tool and its associated technique. In order to better motivate
our particular choices and design, however, it helps to turn to the history of comput-
ing. From a historical perspective, one of the most popular abstractions for interprocess
communication in distributed systems has been that of the remote procedure call (RPC)
[Coulouris et al. 2005]. So much that, in the late eighties, Andrew Tanenbaum published
an article [Tanenbaum and van Renessee 1987] which criticized the “holly cow” status
attained by the model within the distributed operating system research community, in
an allusion to its indiscriminate employment. RPCs have been widely employed for
over two decades, either in a procedure-oriented fashion or, somewhat more recently,
as remote method invocations in object-oriented middleware systems such as CORBA
[Object Management Group 2004], Java/RMI [Sun Microsystems 2004] and many oth-
ers. Although RPCs and Distributed Objects have been largely criticized in recent years
(e.g. [Vinoski 2008]), the model still enjoys significant popularity [Birman 2004], and
systems built on top of these technologies still represent a highly relevant class.

On the debugging side, symbolic or source-level debuggers represent perhaps one
the most popular and reinvented debugging concept of all times. We believe this popular-
ity can be explained by the fact that symbolic debuggers do a very good job at bridging
the low-level mental images that developers form in their minds while coding with the ac-
tual execution of their systems, and also because this debugging concept came to life very
early in the history of computing [Evans and Darley 1966]. Apart from a kind of “cogni-
tive appeal”, therefore, symbolic debuggers are ade factostandard: these tools represent
the only kind of debugging aid, apart from the print statement, which is available for
almost every language, operating system, and hardware platform currently in existence.

The gist of this work lies in how we put together this highly relevant class of
distributed systems – RMI-based Distributed Object Systems – and those highly popular
debugging tools – symbolic debuggers – in such a way that our requirements of portability,
simplicity, and usefulness can be satisfied.

2. Distributed Threads

Distributed threads(DTs) are at the core of our debugging concept. To understand what
they represent, recall that RMI-based Distributed Object Systems work by providing an
illusion, to clients, that objects residing in distinct machines actually share one single
addressing space [Coulouris et al. 2005]. One of the crucial points of this illusion is the
fact that method invocations performed on remote objects appear to clients as if they were
local. Particularly, DOC middleware provides an abstraction of a “virtual” thread that can
cross machine boundaries. At the implementation level, this effect is achieved through
the use ofproxies[Gama et al. 1994] on the client side, which act as a bridge between
application code and middleware. The intuitive notion behind a DT is illustrated in Fig. 1
(a). The DT is depicted as a thread that can cross the network and reach a remote object.

Fig. 1 (b) shows the mechanism that actually provides this illusion. In a typical
Distributed Object Computing (DOC) middleware implementation, the client-side thread
performs a method invocation on a proxy object (1) that has the same interface as the

74



Object 1 Object 2

Node 1 Node 2

distributed thread

(a)

Object 1 Object 2

Node 1 (Client) Node 2 (Server)proxy

Remote
Object

1
2 3 4 5

middleware

(b)

Figure 1. (a) Intuitive notion of a DT and, (b) typical mechanism for implementa-
tion.

remote object it is mimicking. This proxy redirects the call to the middleware (2), which
then takes care of dispatching it to the appropriate server on the network. Upon receiving
a request, the server-side middleware component locates the correct remote object, and
assigns a local thread to service the received call. Finally, it performs the adequate request
on the remote object on behalf of the client (5). An important piece of this mechanism is
that, in most DOC middleware implementations, the client-side thread remains blocked
(3) while the server processes the request, thus emulating the transfer of control that would
actually occur if remote and local objects were in fact residing in the same address space.

Now note that, although the DT in Fig. 1 spans only two machines, it could well
span more if the second node made a remote call to a third server. We will discuss the
general structure of a DT in the context of the process of obtaining its “virtual call stack”.
Fig. 2 shows a DT spanning three nodes. At each of these nodes, the DT is mapped
by the middleware into some local thread, represented in the picture asl1, l2, and l3.
These threads are logically part of the same DTT , so we say that theyparticipate in
T . Local threads are represented in Fig. 2 together with their respective call stacks (1),

nodo 1 nodo 2 nodo 3

l
1

l
2

l
3

3

1

2

Figure 2. Assembly of a virtual call stack.

with each little rectangle representing an activation record (stack frame). Lighter gray
frames represent calls into application code, whereas darker gray frames represent calls
into middleware code. Note that this essentially means that a DTT can be seen as a
sequence of local threads{l1, l2, l3, ...}. Now note that this sequence changes in time: at
each instantt, a DT T can be mapped into a possibly different sequence{l1, ..., ln} of
local threads. Also, for1 ≤ i < n, li, is a local thread that is blocked, waiting for a
remote request that is being handled by server-side local threadli+1 to complete.

Finally, note that it is possible that some threadli is both servicing a request from

75



li−1 and blocked waiting for the remote request being serviced byli+1 to complete. In
fact, this is the case for all local threads in the sequence, except forl1 (which is blocked,
but is not servicing any requests) andln (which is servicing a request fromln−1, but is not
blocked). We call the sequence of local threads thatparticipatein T at timet a snapshot
of T at t. That said, the “virtual call stack” of a DTT at an instantt can be produced by
taking the call stacks of all threads in thesnapshotof T at t (represented by (2) in Fig. 2),
and gluing them together. Since we are interested in abstracting away the middleware, we
strip the darker gray stack frames out and get to the call stack depicted in (3) in 2.

This is just a high level overview of the formalization we have developed on
what DTs are and how we expect them to behave. Due to space constraints, we will
not present it here, but rather refer the interested reader to one of our publications
[Mega and Kon 2007], or to the full thesis text [Mega 2008]. This formalization lays
down the foundations to our debugging technique.

2.1. Distributed threads as debugging tools

Although DOC middleware provides, within its limitations, a very convenient abstrac-
tion for developers, debugging these systems is usually not straightforward. This hap-
pens in part by the reasons pointed by Rosenberg [Rosenberg 1996]; namely, that de-
bugging support trails systems development. Meaning here that vendors are remark-
ably effective at pushing out new technology while delaying, or even neglecting, debug-
ging support. Some remarkable examples of this behavior can be found in the literature
[Cargill and Locanthi 1987]. At the same time, as we already hinted to in Sec. 1, vendor-
specific tools, when provided, fail to be useful on heterogeneous environments where
systems are built on top of multiple platforms. This leads many developers to turn to the
simple, well-known, and widely available symbolic debuggers, or even the pervasive print
statement. In any case, there are several shortcomings to using symbolic debuggers with
DOC middleware, the most important of which we outline in the following paragraphs.

Abstraction mismatch: Symbolic debuggers are inherently connected to the se-
mantics of the underlying language. Since remote method invocations are extensions to
this semantics, they are, almost by definition, out-of-scope for symbolic debuggers. This
means that the useful abstractions provided by DOC middleware and RMIs fall apart as
soon as the developer steps into the first bit of automatically generated proxy code.

Causal relations: capturing causality [Schwarz and Mattern 1994] is a task that
is out of scope for most symbolic debuggers. For DOC middleware, this means that users
will not be able to see the order in which events have happened. Also, they will not be
able to see which local threads participate in which DTs.

Distributed and self-deadlocks: Like with multithreaded applications, DTs can
deadlock when acquiring the same locks in different orders. Distributed deadlocks can
be tough to spot with plain symbolic debuggers, as the cause-and-effect implied by the
caller/callee relationship is not properly captured [Mega 2008].

Conventional symbolic debuggers present a running system as a collection of local
threads with which the user may interact in order to further explore the running states of
their systems. A distributed symbolic debugger is a natural generalization to this model:
instead of “local” threads, we have DTs, and instead of a single process, we have the
whole distributed system. This is precisely what we have designed and built: a debugger

76



that works like a regular symbolic debugger, where users can suspend, resume, do step-by-
step execution, and set breakpoints on DTs. Moreover, it can detect distributed deadlocks,
as well as perform some other forms of limited automatic analysis [Mega and Kon 2007].

The usefulness and helpfulness argument for our approach stems from the obser-
vation that working at the abstraction level of DTs provides several advantages. First, it
enables the user to focus his attention on the state and the control flow of his own appli-
cation, instead of forcing him to manually extract that information from the merged state
of his application and the middleware platform. This is crucial to avoid a phenomenon
known as themaze effect[Gait 1986], where the programmer is overwhelmed with use-
less information, making debugging very hard, if not impossible. Second, DTs convey
some form of causal information which, although limited, allows us to detect situations
such as distributed deadlocks much more easily.

3. A portable distributed symbolic debugger

Our debugger works, in essence, by tracking DT snapshots (Sec. 2). Fig. 3 (a) gives an
overview of its architecture. The debugger is composed by(1) a set oflocal agents, which
are responsible for collecting relevant runtime information, and for interacting with the
various processes in the distributed system on behalf of a(2) global agent. The global
agent, in turn, acts as a global observer of the distributed computation, piecing together
the relevant runtime information collected by the local agents into an approximation of
the distributed execution. The global agent also hosts the user interface, and coordinates
the various local agents during interactive processes.

Debug probe (local agent)

application
process

Observer
(global agent)

node 1 node 2 node 3

1.0 2.0

1.0

3.0

1.0

distributed
thread id

local
thread id

1.0 1.0

1.0

(a) (b)

Figure 3. (a) Architecture of our debugger, and (b) ID propagation.

We identify and track DTs by assigning a unique, 48 bit ID to each of the
local threads in the distributed system. These IDs are actually composed by a pair
(IDnode, IDthread) of smaller IDs, whereIDnode is a 16 bit ID assigned to each node,
andIDthread is drawn from a local sequential counter. Whenever a local threadl with
ID IDl initiates a remote call, its ID gets propagated along the call chain, “tainting” all
of the subsequent local threads. This is shown in Fig. 3 (b). Note that this means that
local threads have actually two IDs: one that identifies the local thread itself, and an-
other one that identifies the DT in which it takes part at a given instant. DTs are tracked
by havinglocal agents emit tracking events at certain key points in the request process-
ing mechanism of DOC middleware. These key points are exactly the points where a

77



local thread enters (server receive) and leaves (server return) a remote object, as they
capture precisely the instants when a local threadl starts and finishes handling a remote
request (and thus, begins and ends participating in a given DTT ). The tracking protocol
is illustrated in Fig. 4. These events are propagated from the local agent to the global
agent through a language-neutral protocol namedDistributed Debugging Wire Protocol,
or DDWP [Mega and Kon 2007, Mega 2008]. Note that “language-neutral” means that
DDWP is not coupled to any specific runtime. The rest of this section will be focused on
the local and global agents, presenting in a rather synthetic form our portability argument.

Local agents. Local agents are in fact composed by three distinct parts: a sym-
bolic debugger, a debugging library (deployed together with the application), and a set
of interceptors woven into the application. The symbolic debugger is just a conventional
debugger that can be operated remotely, such as the Java Platform Debugger, or the well-
known GNU Debugger (GDB). Interceptors are inserted into each proxy method, as well
as into their remote object counterparts. These interceptors call specific methods in the
debugging library whenever a proxy or remote method invocation is performed, allow-
ing us to assign and propagate thread IDs, as well as generate DDWPserver receiveand
server returnevents. A high level overview of how it all fits together is given in Fig. 4.

remote symbolic
debugger

application
process

in-process
debug library

DDWP

symbolic debugger
wire protocol

node 1 node 2
proxy

interceptors
(ID assignment, propagation,

event generation)

remote
object

(a) (b)

Figure 4. (a) A closer look a the local agent, and (b) interceptors.

The important thing to know here is that the only requirement imposed by the
tracking mechanism over the underlying middleware is that it should provide some sup-
port for passing metadata with each request. This is a very reasonable requirement, as
almost every DOC middleware implementation currently in existence supports it. Also,
the only requirement imposed by the tracking mechanism over the underlying program-
ming language is that it should be possible to insert interceptors in each proxy and re-
mote object. We have accomplished this in Java by using bytecode instrumentation
[Mega and Kon 2007]. Similar results could be achieved in other languages through the
use of reflection or source-code instrumentation. Also, there must be a symbolic debugger
available for the language, and this debugger must be remotely operable. Note from Fig.
4 (a) that local agents speak two distinct protocols: the DDWP, which is language-neutral,
and a debugger-specific protocol which is used to drive the symbolic debugger remotely.
Currently, we provide local agents for Java software running CORBA middleware.

Global agent. The global agent is implemented both as an extension to the Eclipse
debugging framework [Wright and Freeman-Benson 2004] and as a regular debugger for
Eclipse. Eclipse provides a generic, flexible and language-neutral metamodel for rep-
resenting entities in a running computation. That said, we essentially implement the

78



metaphor described in Sec. 2.1 – we provide a debugger implementation that actually
aggregates existing debugging clients and, by using the complementary information pro-
vided by DDWP events, presents the entire distributed system as a single virtual process,
composed by a collection of DTs. Our DTs implement the same EclipseIThread inter-
face as regular threads do, meaning Eclipse sees our distributed debugger as just another
debugging client. The architecture of the global agent (in dark gray) and its insertion in
the Eclipse framework are presented in Fig. 5. The main point of this architecture is

extended interfaces

Eclipse debugging framework

DDWP

standard interfaces

distributed-thread-based symbolic
debugger

network layer

standard interfaces

Eclipse GUI

C C++ Ruby PythonPHP Java COBOL

Debugger-specific protocols
(JDWP, DBGp, GDB/RDP etc)

language-dependent
part

Figure 5. Architecture of the global agent.

that it allows us to add support for new languages by simply extending existing symbolic
debugging clients with a set of simple interfaces (extended interfaces in Fig. 5). These
interfaces are mostly concerned with registering listeners for some thread-specific events,
so that the state of DTs and local threads can be kept consistent, and so that interactive
commands issued to DTs can be dispatched to the correct local threads (e.g. if the user
decides to suspend a DT, or execute it in step-by-step mode). Also, the only portion in
this whole architecture that is coupled to the actual programming languages are the actual
language-specific symbolic debugging clients and their communication protocols, but this
does not leak to the upper layers, making for a modular and extensible architecture.

4. Conclusion

This paper summarized our Masters research on developing a novel debugger that has
been conceived with portability, simplicity, and usefulness in mind. Apart from a highly
modular and decoupled architecture, our debugger is backed by a rather simple debugging
technique, which requires minimal instrumentation of the target application and imposes
very few requirements on the underlying middleware and programming language. Most
of the results of this work have been previously published both nationally and interna-
tionally: at the 2004 OOPSLA Eclipse Technology eXchange [Mega and Kon 2004], in
the 2006 Brazilian Symposium on Computer Networks [Mega and Kon 2006], and in the
2007 International Symposium on Distributed Objects and Applications [Mega 2008]. A
demonstration of the initial prototype has been carried out in the tools track of the 2005
Brazilian Symposium on Software Engineering (SBES) [Mega and Kon 2005]. More-
over, both the implementation (free software) and a demonstration screencast of our tool
are available athttp://god.incubadora.fapesp.br/portal/screenshots .

79



References
Birman, K. P. (2004). Like it or not, web services are distributed objects.Communications

of the ACM, 47(12):60–62.

Cargill, T. and Locanthi, B. (1987). Cheap Hardware Support for Software Debugging
and Profiling.ACM SIGARCH Computer Architecture News, 15(5):82–83.

Cheng, D. and Hood, R. (1994). A portable debugger for parallel and distributed pro-
grams. InProc. of the 1994 ACM/IEEE conf. on Supercomputing, pages 723–732.

Coulouris, G., Dollimore, J., and Kindberg, T. (2005).Distributed Systems: Concepts
and Design. Addison-Wesley, 4th edition.

Evans, T. G. and Darley, D. L. (1966). On-line debugging techniques: a survey. InProc.
of the Nov. 7-10 AFIPS fall joint computer conference, pages 37–50.

Gait, J. (1986). The Probe Effect in Concurrent Programs.Soft.: P & E, 16(3):225–233.

Gama, E., Johnson, R., Helm, R., and Vlissides, J. (1994).Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.

Hondroudakis, A. (1995). Performance analysis tools for parallel programs. Technical
report, Edinburgh Parallel Computing Centre.

Mega, G. (2008). Depuração Simbólica Extensı́vel para Sistemas de Objetos Distribuı́dos.
Master’s thesis, Universidade de São Paulo.

Mega, G. and Kon, F. (2004). Debugging Distributed Object Applications with the Eclipse
Platform. InProc. of the 2004 OOPSLA Eclipse Technology eXchange, pages 42–46.

Mega, G. and Kon, F. (2005). GOD: Um Depurador Simbólico para Sistemas de Objetos
Distribuı́dos. Anais Eletrônicos do Salão de Ferramentas do Simpósio Brasileiro de
Engenharia de Software de 2005 (SBES’05).

Mega, G. and Kon, F. (2006). Depurando Sistemas de Objetos Distribuı́dos da Forma que
Gostarı́amos. InProc. of the 24th SBRC, pages 1131–1346.

Mega, G. and Kon, F. (2007). An Eclipse-based Tool for Symbolic Debugging of Dis-
tributed Object Applications. In Meersman, R. and Tari, Z., editors,Proc. of the 2007
Symposium on Distributed Objects and Applications (DOA’07), volume 4803 ofLNCS,
pages 648–666. Springer.

Object Management Group (2004).The Common Object Request Broker Architecture.

Rosenberg, J. B. (1996).How Debuggers Work: Algorithms, Data Structures, and Archi-
tecture. Wiley, 1st edition.

Schwarz, R. and Mattern, F. (1994). Detecting Causal Relationships in Distributed Com-
putations: In Search of the Holy Grail.Distributed Computing, 7(3):149–174.

Sun Microsystems (2004).Java RMI Specification. Sun Microsystems.

Tanenbaum, A. S. and van Renessee, R. (1987). A critique of the remote procedure call
paradigm. InProc. of the 1987 EUTECO, pages 775–783.

Vinoski, S. (2008). Convenience Over Correctness.IEEE Internet Computing, 12:89–92.

Wright, D. and Freeman-Benson, B. (2004). How To Write an Eclipse Debugger.
http://www.eclipse.org/articles/Article-Debugger/how-to.html.

80




