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Abstract. This paper presents a new approach for the analysis of microarray
data by the use of Recurrent Neural Networks (RNNs) as a time model of the
gene regulatory network. Our method extracts a Markov Chain (MC) from a
trained RNN and the relations among genes in each MC state. We propose to
use the learning ability of RNNs for the automatic construction of the model
with the gene interactions represented by the weights and afterwards to use an
algorithm to extract these relations in the form of MCs and linear matrices easily
visualized in the form of graphs of states and genes. The graph of states show
the evolution of the gene expression levels in time while the gene graph shows
the dependencies among genes in each Markov state.

1. Introduction

With the increasing advance of genomic projects, a great amount of microarray data has
been yielded. These high troughput techniques have made necessary the development of
automatic analysis programs of these generated data, which is shifting from the common
ad hoc analysis to statistical analysis.

The microarrays were developed on the 90’s and it is possible today to anal-
yse the gene expression of thousand of genes at the same time. Using them, it
is possible to study the gene expression patterns, that are the base of the celu-
lar fisiology, analysing the activation (or inactivation) of the genes in a certain
enviroment[Alberts et al. 2004],[Causton et al. 2003],[Kohane et al. 2003]. This work
intends not only to analyse which genes are, or not, being activated but also the inter-
actions among them.

Microarrays contain the gene expression levels of many genes simultaneously (for
instance, 30000 genes) at different time steps. At each time step, the expression level of
a certain gene depends on the actual expression of all the other genes and also on their
past values. This net of interactions cannot be represented by a single net of linear rela-
tions, because some genes may influence positively or negatively other genes depending
on their absolute values. Therefore, only by using a net of nonlinear relations, such as
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those present in Recurrent Neural Networks, it is possible to capture the relations among
gene expression levels. Recurrent Neural Networks may be automatically trained with
time series. At the same time, these remove the noise interactions, remaining only the
main relations among variables in the network structure. However, the knowledge in
the form of weights is difficult to understand. Certainly, if we are interested only in the
prediction of the gene expression levels, just to train the network would suffice. How-
ever, most users are interested in understanding and visualizing the network of gene in-
teractions. Then, in this work, we compute a Markov Chain from the Recurrent Neu-
ral Networks[Pechmann and Cechin 2005],[Pechmann and Cechin 2004]. Once learned
in the weights of the neural network, these temporal relations may be extracted in the
form of a Markov Chain states, which is a form easily understandable by any scientist.

The states and transitions in the Markov Chain represent the nonlinear temporal
relations among discretized gene expression levels. Our extraction method guarantees
that in each state, only linear relations remain and these are represented in the form of
a gene graph. Then if one gene is influencing positively other genes and afterwards this
influence turns to be negative, then we extract two markov states, one for each linear influ-
ence. This linear relations among genes is of great value for biologists promoting a better
understanding about the organism under analysis. First, by understanding the network
of gene activation, it is possible to predict the reaction of the organism (activated genes)
under the influence of drugs, environment conditions or phase of the life cycle. Second,
the temporal relation in the form of a Markov Chain allows the scientist to understand and
predict under which conditions the organism changes its linear network of gene expres-
sion levels to another one, and therefore how the organism adapts its network to adverse
environmental conditions, for instance, availability of different elements, food, minerals,
temperature and stress conditions. Different conditions need different linear influences
among genes, even to the degree that a positive influence between two genes must turn
to a negative influence. Extracting this information without the use of computational tec-
niques is impracticable because of the great amount of data and genes. Our work presents
a first approach to solve the automatic extraction of such information and its application
to the Stanford Microarray Database (SMD) [Ball et al. 2005].

Thus, this work presents in Section 2 a brief description about Markov Chains.
For a good introduction to Recurrent Neural Networks, see [Haykin 1999]. The extraction
methodology is described in Section 3. In section 4, we describe the data set used, as well
as the data pre-processing and the results obtained. Finally, in Section 5, the conclusions
are presented.

2. Markov Chains

A stochastic process is a colection of random variables indexed by a time parameter n,
defined in a space named state space. The value xn assumed by the random variate Xn in
a certain instant of time is called state. A random process, Xn, is a Markov process if the
future of the process, gived the present, is independent of the past of it.

In a Markov Chain of order 1, the actual state depends only of the previous state,
as expressed in Eq 1.

P [Xn+1|Xn = xn, ..., X1 = x1] = P [Xn+1 = xn+1|Xn = xn] (1)
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So, a sequence of random variables X1, X2, ..., Xn, Xn+1 forms a Markov Chain
if the probability of the system to be in the state xn+1 in time n + 1 depends exclusively
of the probability that the system was on state xn in time n [Haykin 1999].

In a Markov Chain, the transition of a state to another is stochastic, but the pro-
duction of an output simbol is deterministic. The probability of transition of a state i in
time n to the state j in time n + 1 is given by

P [Xij] = P [Xn+1 = j|Xn = i] (2)

All the transition probabilities must satisfy the following conditions:

pij ≥ 0 for all (i, j)

and
∑

j pij = 1 for all i.

In the case of a system with a finite number K of possible states, the transition
probabilities constitute a matrix K-by-K, called stochastic matrix, whose individual ele-
ments satisfy the described conditions in Eqs 1 and 2, where the sum of each line of the
matrix should result in 1 [Manning and Schutze 2000].

3. Extracting of Markov Chains from RNNs

In this section, we presented the knowledge extraction method described in
[Pechmann and Cechin 2005] and [Pechmann and Cechin 2004]. The objec-
tive of the knowledge extraction is to generate a concise and easily unders-
tandable symbolic description of the knowledge stored in the recurrent model
[Cloete and Zurada 2000],[Giles et al. 2001],[Andrews et al. 1995].

Recurrent Neural Networks are nonlinear dynamic systems sensible to initial con-
ditions and they are able to store the dynamics of the gene expression levels in the form
of parameters.

The state extraction is related to the division of the input space or of the related
neural space (space spanned by the neuron activations) of the RNN, or to clustering meth-
ods. The clustering method investigated is the fuzzy clustering. The main objective here
is to find a state (discrete) representation of the hidden layer activation. This state repre-
sentation is composed of a set of membership functions, which may be reduced to discrete
sets if we define a threshold, for instance 50% as the border definition of each state, and
a linear approximation relating input and outputs. This linear approximation is valid only
in the respective state. Thus, the membership value can be interpreted as a measure of the
validity of the linear approximation. To combine the individual neuron membership func-
tions in a membership function for the network, we use the operators of the Fuzzy Logic.
If we know (certainty indicated by the membership value) where each hidden neuron is
working, then the whole network can be collapsed into a linear relation among inputs and
outputs. Therefore, each state is represented by such a linear relation and a combination
of fuzzy sets for the hidden neurons.

Two compromises have to be reached in the choice of the number of membership
functions used to represent the activation of each neuron. Normally, larger states contain
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more data and represents larger regions of the neural work space and input spaces, re-
sulting in a more spare representation, which is also easier to understand but represents
the data in a less exact way. Contrary to this, smaller more numerous neuron states rep-
resent few data very exactly, but many of them are required to represent the whole input
space. They are more difficult to understand and to analyze. If we choose a too fine rep-
resentation for each neuron, many resulting states will contain few data or even no data
[Cloete and Zurada 2000].
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Figure 1. Activations for two neurons in the hidden layer during the simulations.
The work regions of the activation function of the nonlinear neurons is shown
with crosses. Neurons that work only in the central linear region of the activation
function occupy only one membership function (left). Neurons that work along
a larger part of the activation function, that is, over several linear regions of the
activation function, require more fuzzy sets (right).

To compute the adequate number of membership functions for each neuron, the
following procedure is applied. After the training and test of the RNN, the data is pre-
sented again to the network to compute the statistical distribution of the activations of the
neurons in the hidden layer. The construction of the membership functions is based on
the Gauss function considering the mean and standard deviation of the activation values
for each neuron in the hidden layer (see Figure 1). According to the occupancy of the
neural space, the number and form of the linear approximations are chosen. The choice
of the number of fuzzy sets for each neuron is based on the error of the piecewise linear
approximation in the work regions of the hidden neurons.

The Figure 1 shows the membership functions for two hidden neurons and the
correspondent linear relations: 0.25x + 0.5 for the first neuron and three linear functions:
0.034x+0.14, 0.25x+0.5 and 0.021x+0.89 for the second one. This way, our approach
does not attribute states to a neuron if this requires just one to be represented.

To obtain the states for the whole network, we proceed in the following way. If µ11

is the membership function of the first neuron and µ12, µ22 and µ23 of second neuron, then
the combination of them gets the membership for the whole network. The combination is
implemented with the product or min operator of the Fuzzy Logic, for example, µ11µ22.
Because in each neuron state, we may represent the neuron by its linear approximation
(0.034x + 0.14, for instance), the combination of the membership functions of each neu-
ron allows us to collapse the whole network into a single linear relation among network
input and outpus. Unfortunately, this makes the number of fuzzy sets for the whole net-
work O(ph), where p is the number of fuzzy sets used for each hidden neuron and h is
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the number of hidden neurons. Then we perform a statistical analysis of the occupancy of
each whole network state to discard those less occupied. Therefore, the user may choose
between an investigation about typical states during the experiment or to investigate rare
states with uncommon relations among genes that appear due to special conditions oc-
curred during the experiment. Thus, the obtained number of states reflects the richness or
variability of the possible interactions among genes.

The state transitions are detected through the time series used in the clustering. It
is performed using the clusters as states and identifying each state transition. To obtain
an approximation of the probability values, we compute the transition frequencies.

4. Experiments

Experiments were carried out using a set of 80 gene expression vectors for 2467 yeast
genes that were selected by Eisen et al [Eisen et al. 1998] and used with succes by
Brown et al [Brown et al. 2000]. The data were generated from spotted arrays us-
ing samples collected at various time points during the diauxic shift (transition from
anaerobic fermentation of glucose to aerobic respiration of ethanol), the mitotic cell
division cycle, sporulation, and temperature and reducing shocks. This data is part
of the Stanford Microarray Database (SMD) [Ball et al. 2005] and are available at
http://rana.stanford.edu/clustering.

For the Markov Chain generation, first the data must be used to train a RNN. The
great amount of patterns in the data set, its high level of correlation and noise makes
this data inadequate for direct network training. Then, we applied the described pre-
processing before submitting the network to training.

4.1. Pre-processing

First, we reduced the data set to data set representatives. This breaks the statistical de-
pendency of our network on the more common genes and on the less representative ones.
Many similar gene expression patterns are reduce to few ones. This maintains the di-
versity and richness of the data without loosing information and causing the network to
represent only the maybe not so interesting bulk of genes. Such caracteristics were un-
known at this stage of our investigation. Thus, aiming to discover the more proeminent
patterns in this data and to determine how many they are, the patterns were processed
with Self-Organizing Maps [Kohonen 1997]. This way, we get a balanced training set
appropriate for the Markov Chain extraction.

The number of training features or gene representatives for the RNN should not
be so many making the training process impracticable, and neither so small that could not
represent all the information present in the database.

The features can be determined by the analysis of the SOM trained with the
whole data [Almeida et al. 2006]. The SOM has the ability to divide the different features
present in the set. After the training, we count the number of data examples represented
by each neuron and a threshold is chosen. This threshold will determine the minimum
amount of genes that each SOM neuron must have to be used as RNN input. In this ex-
periment, this threshold was 35 gene expressions. Therefore, each RNN input represents
at least 35 genes with similar time behaviour. Any relation among two different input
and outputs detected in the extraction represents a relation between two groups of genes.
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Certainly it is not possible to detect which gene is causing those transitions in the others
because those genes have the same time series and it is not possible, based only on the
available data, to differentiate among them. Using the threshold of 35 genes, we obtained
11 features (each feature represents the time pattern of at least 35 genes) which are used
as RNN network inputs. The choice of 35 genes is based on the histogram of the number
of genes represented by each SOM neuron (see Figure 2).

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

50

55

Neuron

A
m

ou
nt

 o
f r

ep
re

se
nt

ed
 d

at
a

Figure 2. Amount of data represented for each neuron of SOM.

Once those features were determined and identified we have chosen only 36 gene
expressions for each of the 11 features. Some of these features have more than 36 gene
expressions, but we choose only the 36 most similar to the SOM codebook vector. This
way, the overrepresented features in the data set are balanced with those with less patterns.

4.2. RNN Training

To obtain a good model for the knowledge extraction phase, several network topologies,
all based on the Jordan Architecture, were trained and tested. The training database was
used with networks consisting of three layers, differing by the number of neurons in the
hidden layer. Networks with 1, 3, 5, 10, 15 and 20 hidden neurons were tested with the
RMS error, as can be seen in the Table 1.

Table 1. Comparation among RNN Architectures.

Number of hidden neurons RMS error
1 4.135321
3 3.956288
5 3.912200

10 3.866480
15 3.771372
20 3.733685

The network with 5 neurons in the hidden layer was chosen (see Figure 3). This
was based on the good validation results presented by the network and on the small num-
ber of hidden neurons, what enables the extraction of a formal model of representation
with a high level of comprehensibility.
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Figure 3. RNN based on the Jordan Network’s Architecture and used in the
Markov Chain extraction.

4.3. Markov Chain Extraction

For the extraction of the Markov Chain, 3 membership functions were built for each
neuron, and by combining these functions, we could identify the membership functions
for each state of the Markov Chain. From all possible Markov states and corresponding
membership function, 24 were used to represent the training data.

The definition of the number of states was performed with the construction of a
histogram, for which all membership functions were computed using all the training data.
The 5 begining states represents 95% of the sampled data, and were used to compute the
Markov Chain.

Then, according to the determined states, the activations of the hidden neurons
were used by the fuzzy clustering process to determine the transition probability among
states. This probability is computed by the statistical analysis of the time series, where
the change in the state is detected and also its frequency. Therefore, as the states are
already determined and the transitions among them computed, we obtain the Markov
Chain representing the database (Fig. 4).

In this Markov Chain, which is represented in the form of a graph, the nodes
are the states and the arcs are the probability of transition among them. The first and
second states, for instance, represent 90% of the data. The probability of 86% means that,
once the gene network of Saccharomyces cerevisiae is in the first state, which is defined
by a certain interaction among genes, it remains there most of time. A Markov state is
not necessarily a set of similar gene expression levels, but is characterized by influences
among genes. The state is defined not by the expression level, but by the linear influence
of one gene on the others. Since the data is a time series of continuous values, the actual
gene expression level jumps smoothly from one state to the other. Then, the representation
of this transition as a Markov Chain is a simplification of the real biological transition,
because this transition occurs smoothly. However, the fuzzy membership functions give
us this information and we are able by following their values, to know if we are entering
or leaving one state.

Beyond this fuzzy concept of membership in each state, we have determined for
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Figure 4. Markov Chain extracted from RNN with 5 hidden neurons, trained with
microarray data.

each state the set of linear equations (influences among genes), that describe the inter-
action among genes. These are usually known as the gene regulatory network with the
generalization, that now we are able to attribute if the influence is positive, negative or
even zero. Further, by the membership value we may verify the validity of the above
influences on time, that is, during which period of time of the experiment the regulatory
network is valid. The Fig. 6 represents the two main Markov states (regulatory networks)
and Fig. 5 the period of time in which the corresponding regulatory network is valid. The
first regulatory network is valid in the first 60 time steps while the second one is valid in
the last 20 time steps. We can see the different influences among the gene groups (nodes)
and the influences (arcs) both in the form of activation (positive arcs) or inhibition (nega-
tive arcs). This figure describes a valid regulatory network among these gene groups in a
certain period of time of the temporal series.

Figure 5. Period of time where each Markov state.

For example, gene group A activates and is activated by gene group C (+9 and
+13) and is deactivated by K (−11) and L (−14) in the first state (first 60 time steps).
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(a) Regulatort network corresponding to Markov
state 1 in Fig. 4.

(b) Regulatory network corresponding to
Markov state 2 in Fig. 4.

Figure 6. Graph representing the two main states of the Markov Chain extracted.
The nodes represents the genes and arcs the influences.

However, as the organism enters the last 20 time steps, the influence of C on A increases
(+25), all other influences disappear and appears the influence of F on A, not directly
present in state 1. In state 1, of all influences in the regulatory network, the greatest one
is represented by J −19−→ I (negative) while this influence disappears in state 2.

5. Conclusions

The analysis of genic expression levels with microarray techniques is becoming more
and more common and it is also producing a huge amount of data. One of the problems
encountered in this area is how to obtain useful information from time series.

Two aspects of interest for the researcher are the time evolution of the genic ex-
pression and their mutual influence in a regulatory network form. Thus, this work presents
a original methodology for knowledge extraction from microarray data. We have showen
the necessary data manipulation and pre-processing, training of the Recurrent Neural Net-
work (time model) and extraction of information in the form of a Markov Chain and
extraction of regulatory networks.

The Markov Chain represents the temporal relations among genes and expresses
the transition probabilities. Membership values can be used to determine the exact time
validity of each Markov state and the interaction graph, one for each Markov State, repre-
sents the influence of the one gene or another or the regulatory network. These relations
are shown in the form of graphs.

These relations among genes are important in diverse areas, like the drug industry,
which, with this information can develop strategies to reduce side effects in the cure of an
illness. The automatic determination of the relations among gene expression levels is the
subject of a lot of research to be done.
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