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Abstract. This paper presents a new method, referred to as Increasing Trans-
lation Invariant Morphological (ITIM), to overcome the random walk dilemma
for financial time series forecasting. It consists of a hybrid intelligent model
composed of a Modular Morphological Neural Network (MMNN) and a Modi-
fied Genetic Algorithm (MGA), which searches for the minimum number of time
lags for a fine tuned time series representation, as well as by the initial weights,
architecture and number of modules of the MMNN. Each element of the MGA
population is trained via Back Propagation (BP) algorithm to further improve
the parameters supplied by the MGA. The proposed method, after forecasting
model adjustment, performs a behavioral statistical test and a phase fix proce-
dure to adjust time phase distortions that appear in financial time series. An
experimental analysis is conducted with the proposed method using two real
world time series and five well-known performance measurements, demonstrat-
ing consistent better performance of this kind of morphological system.

1. Introduction
Many efforts have been made to the development of models able to predict the fu-
ture of a given phenomenon. Several linear and non linear statistical models were
proposed for such [Box et al. 1994, Rao and Gabr 1984, Ozaki 1985, Priestley 1988,
Rumelhart and McCleland 1987]. However, those statistical models usually involve high
technical and mathematical complexities, limiting the development of an automatic
forecast system [Clements et al. 2004]. In order to overcome the limitation of statis-
tical models, approaches based on Neural Networks (NNs) have been successful pro-
posed for nonlinear modeling of time series [Preminger and Franck 2007, Zhang 2007,
Ferreira et al. 2008].

An important class of NNs are the Morphological Neural Networks (MNNs).
Sousa [Sousa 2000] presented a particular MNN, referred to as Modular Morpho-
logical Neural Network (MMNN), based on the Matheron Decomposition Theo-
rem [Matheron 1975]. In the morphological systems context, an interesting work was
presented by Araújo et al. [Araújo et al. 2007], which consists of an evolutionary mor-
phological approach definition for financial time series forecasting.

This paper proposes a new method, referred to as Increasing Translation Invari-
ant Morphological (ITIM), to overcome the random walk dilemma for financial time se-
ries forecasting. It consists of a hybrid intelligent model composed of a Modular Mor-
phological Neural Network (MMNN) [Sousa 2000] and a Modified Genetic Algorithm
(MGA) [Leung et al. 2003]. The MGA is responsible to define the most fitted time lags
for time series representation, based on Takens Theorem [Takens 1980], and the initial
weights, architecture and number of modules of the MMNN. Each element of the MGA
population is trained via Back Propagation (BP) algorithm [Sousa 2000] to further im-
prove the parameters supplied by the MGA. Firstly, the proposed method chooses the
most accurate prediction model, then it performs a behavioral statistical test and a phase
fix procedure to adjust time phase distortions that appear in financial time series.

Furthermore, experimental results are presented for two real world time series:
Dow Jones Industrial Average (DJIA) Index and Standard & Poor 500 (S&P500) In-
dex. The results are discussed according to five well-known performance measurements:
Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), U of Theil Statis-
tic (THEIL), Prediction Of Change In Direction (POCID) and Average Relative Variance
(ARV).
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The experimental analysis of the proposed model demonstrates consistent bet-
ter performance of this kind of morphological system when compared to results
found with MultiLayer Perceptron (MLP) networks, the method proposed in Araújo et
al.[Araújo et al. 2007] and the previously introduced Time-delay Added Evolutionary
Forecasting (TAEF) method [Ferreira et al. 2008].

2. Fundamentals
This section presents the fundamentals and theoretical concepts necessary to comprehen-
sion of the proposed method.

2.1. The Time Series Prediction Problem
A time series is a sequence of observations about a given variable. This variable is ob-
served in discrete or continuous time points, usually time equidistant. Thus, the analysis
of this temporal behavior evolves the process or phenomenon description that generates
such observations sequence.

In this way, a time series can be defined by,

Xt = {xt ∈ R | t = 1, 2, . . . , N}, (1)

where t is the temporal index and N is the number of observations. Thus, Xt will be seen
as a set of temporal observations of a given phenomenon, orderly sequenced and equally
spaced.

The aim of forecasting techniques applied to a time series Xt is to provide a mech-
anism that allows, with certain accuracy, the forecasting of the future values of Xt, given
by Xt+h, h = 1, 2, ..., where h represents the prediction horizon of h step ahead. Nev-
ertheless, in order to provide proper forecast performance, the most relevant factor to
guarantee forecasting accuracy is the correct choice of time lags for representing a given
time series [Ferreira et al. 2008].

2.2. MMNN Definition
Sousa [Sousa 2000] defined the MMNN for designing translation invariant operators that
satisfy the MDT [Matheron 1975] for dilations as well as for erosions. Figure 1(a)
presents the MMNN architecture for the Matheron Decomposition [Matheron 1975] by
dilations.

The following equations define the MMNN architecture for the Matheron Decom-
position [Matheron 1975] via dilations according to this approach.

vk = δk = max(x + ak), (2)

where x represents the MMNN input signal.

MMNN Output: Y = min(v), (3)

in which
v = (v1, v2, . . . , vk). (4)

The MMNN weights matrix, A, is defined by

A = (a1; a2; . . . ; ak), (5)

in which ak ∈ Rk, k = 1, 2, . . . , ND represents the MMNN weights (i.e., matrix rows
composed by structuring elements ak). The Symbol ∧ represents the minimum operator.

In a dual manner, the MMNN architecture for the Matheron Decomposi-
tion [Matheron 1975] via erosions is defined by substituting dilations by erosions and
symbol ∧ by ∨, where ∨ represents the maximum operation. Figure 1(b) presents the
MMNN architecture for the Matheron Decomposition [Matheron 1975] by erosions.
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(a) (b)

Figure 1. MMNN architectures for the Matheron decomposition.

2.3. MMNN Training Algorithm

Based on Back Propagation (BP) algorithm. Sousa [Sousa 2000] defined the MMNN
training for Matheron Decomposition [Matheron 1975], which is formally defined by the
following equations [Sousa 2000]:

A(n + 1) = A(n)− µ∇AJ(A), n = 0, 1, . . . (6)

in which A is the weight matrix, µ is the learning rate and ∇AJ(A) is the gradient matrix
of a cost function J(A) (to be minimized with respect to the weight matrix A). For a
given training set,

{(xm, dm), m = 1, 2, . . . , M} , (7)

where dm is the desired output of a given input xm and M is the number of patterns of
training set, J(A) is defined by

J(A) =
1

2
e2

m, (8)

where em = dm − ym is the difference between the desired output and the actual output
for the input xm, m = 1, 2, . . . , M . The gradient presented in equation (6) is given
by [Sousa 2000]

∂J

∂ak

= −e
∂y

∂vk

∂vk

∂ak

, k = 1, 2, . . . , ND. (9)

According to Sousa [Sousa 2000], the partial derivatives in equation (9) are esti-
mated by the methodology of Pessoa and Maragos [Pessoa and Maragos 1998] via rank
indication vectors c and smooth impulse functions Qσ. In matrix terms, the gradient may
be defined by [Sousa 2000]

∇AJ(A) = −e · diag(c) · C, (10)

in which C = (c1; c2; . . . ; ck). Term “·” represents the scalar product. Terms c and ck are
defined by Matheron Decomposition [Matheron 1975] via dilations by [Sousa 2000]

c =
Qσ(min(v) · 1− v)

Qσ(min(v) · 1− v) · 1T
; (11)

ck =
Qσ(max(x + ak) · 1− x− ak)

Qσ(max(x + ak) · 1− x− ak) · 1T
, (12)

where T denotes transposition and “·” represents scalar product.
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In a dual way, terms c e ck are defined by Matheron Decomposi-
tion [Matheron 1975] via erosions by [Sousa 2000]

c =
Qσ(max(v) · 1− v)

Qσ(max(v) · 1− v) · 1T
; (13)

ck = − Qσ(min(x− ak) · 1− x + ak)

Qσ(min(x− ak) · 1− x + ak) · 1T
. (14)

3. The Proposed Approach
The approach proposed in this paper uses an evolutionary search mechanism in order
to train and adjust the Modular Morphological Neural Network (MMNN) applied to fi-
nancial time series forecasting (overcoming the random walk dilemma). It is based on
the definition of the four main elements necessary for building an accurate forecasting
system [Ferreira et al. 2008]:

• The underlying information necessary to predict the time series;
• The structure of the model capable of representing such underlying information

for the purpose of prediction;
• The appropriate algorithm for training the model
• The behavior test to adjust time phase distortions

It is important to consider the minimum possible number of time lags in the representation
of the series because the model must to be as parsimonious as possible.

Based on that definition, the proposed method, referred to as Increasing Transla-
tion Invariant Morphological (ITIM), consists of a hybrid intelligent morphological model
composed of a MMNN [Sousa 2000] with a MGA [Leung et al. 2003], which searches
for:

1. The minimum number of time lags to represent the series: initially, a maximum
number of time lags (MaxLags) is pre-defined and then the MGA will search
for the number of time lags in the range [1,MaxLags] for each individual of the
population;

2. the weights (ak), architecture (by dilations or by erosions – MMNNArch) and
number of modules of the MMNN (NModules): initially, a maximum number of
MMNN modules (MaxMod) is pre-defined and then the MGA chooses, for each
candidate individual, the weigths, the most adequate MMNN architecture and the
number of MMNN modules in the range [1,MaxMod].
The MGA used is based on the work of Leung et al. [Leung et al. 2003], where

special crossover and mutation operators are applied to accelerate the search convergence.
The MGA procedure consists on the selection of a parent pair of chromosomes and then
performing crossover and mutation operators (generating the offspring chromosomes –
the new population) until the termination condition is reached; then the best individual in
the population is selected as a solution to the problem.

The crossover operator is used for exchanging information from two par-
ents (vectors p

1
and p

2
) obtained in the selection process by a roulette wheel ap-

proach [Leung et al. 2003]. The recombination process to generate the offsprings (vectors
C1, C2, C3 and C4) is done by four crossover operators, which are defined by the follow-
ing equations [Leung et al. 2003]:

C1 =
p

1
+ p

2

2
, (15)

C2 = pmax(1− w) + max(p
1
, p

2
)w, (16)

C3 = pmin(1− w) + min(p
1
, p

2
)w, (17)
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C4 =
(pmax + pmin)(1− w) + (p

1
+ p

2
)w

2
, (18)

where w ∈ [0, 1] denotes the crossover weight (the closer w is to 1, the greater is the
direct contribution from parents), max(p

1
, p

2
) and min(p

1
, p

2
) denotes the vector whose

elements are the maximum and the minimum, respectively, between the gene values of
p

1
and p

2
. The terms pmax and pmin denote a vector with the maximum and minimum

possible gene values, respectively. After the offspring generation by crossover operators,
the son with the best evaluation (greatest fitness value) will be chosen as the offspring
generated by the crossover process and denoted Cbest.

After the crossover operator, Cbest is selected to have a mutation process,
where three new mutated offsprings are generated and defined by the following equa-
tion [Leung et al. 2003]:

M j = Cbest
i + γi∆Mi, j = 1, 2, 3 and i = 1, 2, . . . , NG, (19)

where γi can only take the values 0 or 1, ∆Mi are randomly generated numbers such that
pmin ≤ Cbest

i + ∆Mi ≤ pmax and NG denotes the number of genes in the chromosome.
The first mutated offspring (M1) is obtained according to (19) using only one term

γi set to 1 (i is randomly selected within the range [1, NG]) and the remaining terms γi are
set to 0. The second mutated offspring (M2) is obtained according to (19) using some γi
randomly chosen and set to 1 and the remaining terms γi are set to 0. The third mutated
offspring (M3) is obtained according to (19) using all γi set to 1.

Then, each element of the MGA population is trained via Back Propagation (BP)
algorithm [Sousa 2000] to further improve the parameters supplied by the MGA, that is,
the BP is used, for each individual candidate, to perform a local search around the initial
weights supplied by MGA. The main idea used here is to conjugate a local search method
(BP) to a global search method (MGA). While the MGA makes possible the testing of
varied solutions in different areas of the solution space, the BP acts on the initial solution
to produce a fine-tuned forecasting model. Such process is able to seek the most compact
MMNN, reducing computational cost and probability of model overfitting. Each MGA
individual represents a MMNN, where its input is defined by the number of time lags and
its output represents the prediction horizon of one step ahead.

Most works found in the literature have the fitness function (or objective func-
tion) based on just one performance measure, like Mean Square Error (MSE). However,
Clements et al. [Clements and Hendry 1993], since 1993, shown that the MSE measure
has some limitations to available and to compare the prediction model performance. In-
formation about the prediction, as the absolute percentage error, the accuracy in the future
direction prediction and the relative gain regarding naive prediction models (like random
walk models and mean prediction) are not described using MSE measure.

In order to provide a more robust forecasting model, a multi-objective evaluation
function is defined, which is a combination of five well-known performance measures:
Prediction Of Change In Direction (POCID), Mean Square Error (MSE), Mean Abso-
lute Percentage Error (MAPE), Normalized Mean Square Error (NMSE) or U of Theil
Statistic (THEIL) and Average Relative Variance (ARV), where all these measures are
formally defined in [Ferreira et al. 2008]. The multi-objective evaluation function used
here is given by

Fitness Function =
POCID

1 + MSE + MAPE + THEIL + ARV
. (20)

Whereas there are linear and nonlinear metrics in the such evaluation function and
each one of these metrics can contribute of different forms for the evolution process, the
Equation 20 was built of empirical form to have all information necessary to describe as
well as possible the time series generator phenomenon.
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After MMNN adjusting and training, the proposed method uses the phase fix pro-
cedure presented by Ferreira [Ferreira et al. 2008], where a two step procedure is intro-
duced to adjust time phase distortions observed (“out-of-phase” matching) in financial
time series. Ferreira [Ferreira et al. 2008] has shown that the representations of some time
series (natural phenomena) were developed by the model with a very close approxima-
tion between the actual and the predicted time series (referred to as “in-phase” matching),
whereas the predictions of other time series (mostly financial time series) were always
presented with a one step delay regarding the original data (referred to as “out-of-phase”
matching).

The proposed method uses the statistical test (t-test) to check if the MMNN model
representation has reached an in-phase or out-of-phase matching. This is conducted by
comparing the outputs of the prediction model with the actual series, making use only
of the validation data set. This comparison is a simple hypothesis test, where the null
hypothesis is that the prediction corresponds to in-phase matching and the alternative
hypothesis is that the prediction is not correspond to in-phase matching (or correspond to
out-of-phase matching).

If this test accepts the in-phase matching hypothesis, the elected model is ready
for practical use. Otherwise, the proposed method performs a new procedure to adjust the
relative phase between the prediction and the actual time series. The phase fix procedure
has two steps: (i) the validation patterns are presented to the MMNN and the output of
these patterns are re-arranged to create new inputs patterns (reconstructed patterns), and
(ii) these reconstructed patterns are represented to the same MMNN and the output set as
the prediction target. This procedure of phase adjustment considers that the MMNN is
not a random walk model, it just shows a behavior characteristic of a random walk model:
the t + 1 prediction is taken as the t value (Random Walk Dilemma).

If the MMNN was like a random walk model, the phase adjust procedure would
not work. Such phase fix was originally proposed by Ferreira [Ferreira et al. 2008], where
he observed the fact that when Artificial Neural Network (ANN – Multilayer Perceptron
like) is correctly adjusted, the one step shift distortion in the prediction can be softened.

The termination conditions for the MGA are:
1. Minimum value of fitness function: fitness ≥ 40, where this value mean the

accuracy to predict direction around 80% (POCID & 80%) and the sum of the
other errors around one (MSE + MAPE + THEIL + ARV ∼= 1);

2. The increase in the validation error or generalization loss (Gl) [Prechelt 1994]:
Gl > 5%;

3. The decrease in the training error process training (Pt) [Prechelt 1994]: Pt ≤
10−6.
Each individual of the MGA population is a MMNN represented by the data struc-

ture with the following components (MMNN parameters):
• ak: weights (structuring elements) of the MMNN;
• NModules: the number of modules in the MMNN structure (number of decom-

positions);
• MMNNArch: a real-valued variable, where is used to determine if the architecture

is by dilations (MMNNArch > 0) or by erosions (MMNNArch ≤ 0);
• NLags: a vector, where each position has a real-valued codification, which is used

to determine if a specific time lag will be used (NLagsi > 0) or not (NLagsi ≤ 0).

4. Simulations and Experimental Results
A set of two real world financial time series (Dow Jones Industrial Average (DJIA) Index
and Standard & Poor 500 Stock (S&P500) Index) were used as a test bed for evaluation of
the proposed method. All time series investigated were normalized to lie within the range
[0, 1] and divided in three sets according to Prechelt [Prechelt 1994]: training set (50% of
the points), validation set (25% of the points) and test set (25% of the points).

For all the experiments, the method parameters are: maximum number of MMNN
modules (MaxMod = 25) and maximum number of time lags (MaxLags = 10). The

682



MGA parameters used in the proposed method are a maximum number of MGA gener-
ations, corresponding to 104, crossover weight w = 0.9 (used in the crossover operator),
mutation probability equals to 0.1. Each element of the MGA population is then trained
via the Back Propagation algorithm, using a smoothing parameter σ = 0.05 and a conver-
gence factor µ = 0.01. The termination conditions for the Back Propagation algorithm
are the maximum number of epochs (104), the increase in the validation error or general-
ization loss (Gl > 5%) and the decrease in the error of the process training (Pt < 10−6).

Next, will be presented the simulation results involving the proposed ITIM model.
In order to establish a performance study, results previously published in the litera-
ture with the TAEF Method [Ferreira et al. 2008] and the method proposed in Araújo et
al.[Araújo et al. 2007] were examined in the same context and under the same experimen-
tal conditions. For each time series, it was made ten experiments, where the experiment
with the best validation fitness function is chosen to represent the prediction model.

In addition, experiments with MultiLayer Perceptron (MLP) networks were used
for comparison with the proposed method. According to Ferreira [Ferreira et al. 2008],
in all the MLP experiments were tested three time lags windows, a windows with lag 1,
a windows with lags 1 to 5 and a windows with lags 1 to 10, and five different num-
bers (1, 5, 10, 15 and 20) of hidden processing units being tested and one process-
ing unit in output layer (one step ahead prediction). The Levenberg Marquardt Algo-
rithm [Hagan and Menhaj 1994] was employed for training the MLP network for a max-
imum period of 103 epochs. The termination conditions for the MLP training are equal
to the termination criteria for the MMNN training in the proposed method (Epochs, Gl
and Pt ). In all of the experiments, ten random initializations for each architecture were
carried out, where the experiment with the best validation fitness function is chosen to
represent the prediction model. The statistical behavioral test, for phase fix procedure,
was also applied to all the MLP, Araújo et al. and TAEF models in order to guarantee a
fair comparison among the models.

It is worth mentioning that the results with ARIMA models were not presented
in our comparative analysis since Ferreira [Ferreira et al. 2008] has shown that MLP net-
works obtained results better than ARIMA models, for all financial time series used in
this work. In this way, it is used only MLP networks in our comparative analysis.

4.1. Dow Jones Industrial Average (DJIA) Index Series

The Dow Jones Industrial Average Index (DJIA) series corresponds to daily observations
from January 1st 1998 to August 26th 2003, constituting a database of 1420 points.

The parameters automatically defined by the proposed model for the prediction
of the DJIA Index series were the lags 2, 7 and 8 as the most fitted lags for the time
series representation, the MMNN model via dilations with 9 modules and the model as
“out-of-phase” matching. Table 1 shows the results (with respect to the test set) for all the
performance measures for the MLP, Araújo et al., TAEF and the proposed ITIM model.

Table 1. Results for the DJIA Index series.
Evaluation Metrics MLP 5-10-1 Araújo et al. TAEF Proposed ITIM Model

MSE 8.2700e-2 8.3236e-4 2.6841e-5 9.8825e-6
MAPE 9.3700 9.6700 0.1993 1.4101e-2
THEIL 0.9878 0.9945 0.0318 1.1746e-2
ARV 3.3877e-2 3.4423e-2 0.0007 4.1246e-4

POCID 46.74 50.85 97.14 99.15
Fitness Function 4.0734 4.3462 78.8584 96.6121

According to Table 1, it is verified that the prediction of proposed ITIM model
obtained a performance much better (in terms of evaluation function – 96.6121) than
the MLP model (4.0734) and the Araújo et al. model (4.3462), and a slightly better
result than the TAEF model (78.8584). Moreover, the obtained THEIL value (1.1746e-
2) shows that the proposed ITIM model had a much better performance than a random
walk like model [Mills 2003], the MLP model (0.9878) and the Araújo et al. model
(0.9945), and a slightly better result than the TAEF model (0.0318). Again, the POCID
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measure (99.15%) shows that the proposed ITIM model had a much better performance
than a “coin-tossing” experiment, the MLP model (46.74%) and the Araújo et al. model
(50.85%), and a slightly better performance than the TAEF model (97.14%).

Figure 2(a) shows the prediction results of DJIA Index for the last 10 points of the
test set.

4.2. Standard & Poor 500 (S&P500) Index Series
The Standard & Poor 500 (S&P500) Index is a pondered index of market values of the
most negotiated stocks in the New York Stock Exchange (NYSE), American Stock Ex-
change (AMEX) and Nasdaq National Market System. The S&P500 series used corre-
sponds to the monthly records from January 1970 to August 2003, constituting a database
of 369 points.

For the prediction of the S&P500 Index series, the proposed model automatically
selected the lags 2, 4, 5, 8, 9 and 10 as the best lags for the time series representation, the
MMNN model via dilations with 17 modules and the model as “out-of-phase” matching.
Table 2 shows the results (with respect to the test set) for all the performance measures
for the MLP, Araújo et al., TAEF and the proposed ITIM model.

Table 2. Results for the S&P500 Index series.
Evaluation Metrics MLP 1-20-1 Araújo et al. TAEF Proposed ITIM Model

MSE 0.0095 9.7451e-5 8.0263e-4 7.1336e-5
MAPE 1.0100 0.9200 1.0228 7.8553e-3
THEIL 0.9166 0.9498 7.0883 0.6566
ARV 7.2728e-3 7.4749e-3 0.0012 5.5896e-4

POCID 51.11 81.31 100.00 100.00
Fitness Function 17.3644 28.2584 10.9732 60.0570

According to the Table 2, it is possible to note that the prediction of proposed ITIM
model obtained performance much better (in terms of evaluation function – 60.0570)
than the MLP model (17.3644), the Araújo et al. model (28.2584) and the TAEF model
(10.9732). Again, the obtained THEIL value (0.6566) indicated that the proposed ITIM
model had a much better performance than a random walk like model [Mills 2003], the
MLP model (0.9166), the Araújo et al. model (0.9498) and the TAEF model (7.0883).
According to the POCID measure (100.00%), it is possible to verify that the proposed
ITIM model had a much better performance than a “coin-tossing” experiment, the MLP
model (51.11%) and the Araújo et al. model (81.31%), and the same performance than
the TAEF model (100%).

Figure 2(b) shows the prediction results of S&P500 Index for the last 10 points of
the test set.

345 346 347 348 349 350 351 352 353 354

0.43

0.44

0.45

0.46

0.47

0.48

0.49

Test Set

D
JI

A
 In

de
x

 

 

Real Values
Proposed Model
TAEF Model
MLP Model
Araújo et al. Model

(a)

60 61 62 63 64 65 66 67 68 69
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Test Set

S
&

P
50

0 
In

de
x

 

 

Real Values
Proposed Model
TAEF Model
MLP Model
Araújo et al. Model

(b)

Figure 2. Prediction Results for the analyzed financial time series.
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In general, all generated ITIM models using the phase fix procedure to adjust time
phase distortions shown forecasting performance much better than the MLP model and
Araújo et al. model, and slightly better than the TAEF model. The proposed method
was able to adjust the time phase distortions of all analyzed time series (the prediction
generated by the out-of-phase matching hypothesis is not delayed with respect to the
original data), while the MLP model and Araújo et al. model were not able to adjust the
time phase. This corroborates with the assumption made by Ferreira [Ferreira et al. 2008],
where he discusses that the success of the phase fix procedure is strongly dependent on
an accurate adjustment of the prediction model parameters and on the model itself used
for prediction.

5. Conclusion
This paper presented a new method, referred to as Increasing Translation Invariant Mor-
phological (ITIM), to overcome the random walk dilemma for financial time series fore-
casting, which consists of a hybrid intelligent model composed of a Modular Morpholog-
ical Neural Network (MMNN) and a Modified Genetic Algorithm (MGA). The proposed
method searches for the minimum number of time lags for a correct time series represen-
tation and the best MMNN architecture in terms of the weights, the number of MMNN
modules and the type of Matheron Decomposition (by dilations or by erosions) and its
training algorithm. Also, it performs a behavioral statistical test and a phase fix procedure
to adjust time phase distortions that appear in financial time series.

Five different metrics were used to measure the performance of the proposed
method for financial time series forecasting, where a multi-objective empirical fitness
function was built in order to improve the description of the time series phenomenon as
well as possible. The five different evaluations measures used to compose this fitness
function can have different contributions to final prediction result, where a more sophisti-
cated analysis must be done to determine the optimal combination of such metrics.

The results were collected with two real world time series from the financial stock
market with all their dependence on exogenous and uncontrollable variables (Dow Jones
Industrial Average (DJIA) Index and Standard & Poor 500 (S&P500) Index). It is verified
through lagplot analysis that it is possible to notice in financial time series indicative
structures of some nonlinear relationship among the time lags even though they are super-
imposed by a dominant linear component.

It was observed that the proposed model obtained better results than MLP and
Araújo et al. models for all the analyzed financial time series, overcoming the random
walk dilemma, where the predictions of such time series are dislocated one step ahead
with respect to the original data. In this way, the proposed model was able to adjust time
phase distortions of all analyzed financial time series, while all MLP and Araújo et al.
models do not obtained such behavior. Concerning TAEF method, the proposed model
was able to adjust more efficiently the time phase distortions than TAEF model, obtaining
slightly better results for all time series analyzed.

It is worth mentioning that the first time lag is never selected to predict any time
series used in this work. However, a random walk structure is necessary to the phase fix
procedure works, since the key of this procedure is the two step prediction (described by
phase fix procedure) in order to adjust the one step time phase.

While the proposed model was able to adjust the time-phase delay, the MLP and
Araújo et al. models were not capable to produce such correction behavior although
the same procedure was applied to all the models. A feasible explanation for such phe-
nomenon is that the phase fix procedure will depend on the information complexity con-
tained in the time series data and the ability to accurately define the best prediction model
parameters to estimate the real time series values, in other words, the success of the phase
fix procedure is strongly dependent on an accurate adjustment of the prediction model
parameters and on the model itself used for forecasting.

Future works will consider the development of further studies in order to formal-
ize properties of the proposed model using the phase fix procedure. Also, other financial
time series with components such as trends, seasonalities, impulses, steps and other non-
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linearities are being used for the efficiency confirmation of the proposed method, as well
as, further studies, in terms of risk and financial return, are being developed in order to
determine the additional economical benefits, for an investor, with the use of the proposed
method.
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