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Abstract. In this paper we propose a neural architecture for solving contin-
uous time and space reinforcement learning problems in non-stationary envi-
ronments. The method is based on a mechanism for creating, updating and
selecting partial models of the environment. The partial models are incremen-
tally estimated using linear approximation functions and are built according
to the system’s capability of making predictions regarding a given sequence of
observations. We propose, formalize and show the efficiency of this method in
the non-stationary pendulum task. We show that the neural architecture with
context detection performs better than a model-based RL algorithm and that it
performs almost as well as the optimum, that is, a hypothetical system with ex-
tended sensor capabilities in a way that the environment effectively appears to
be stationary. Finally, we present known limitations of the method and future
works.

1. Introduction
When implementing learning algorithms, one often faces the difficult problem of dealing
with environments whose dynamics might change due to some unknown or not directly
perceivable cause. Non-stationary environments affect standard reinforcement learning
(RL) methods in a way that forces them to continuously relearn the policy from scratch.
In this paper we describe a method for complementing RL algorithms so that they perform
well in a specific class of non-stationary environments.

It is important to emphasize that majority of RL approaches were designed to work
in stationary environments. When dealing with non-stationary environments, they usually
have to continually readapt themselves to the changing dynamics of the environment. This
causes two problems: 1) the time for relearning how to behave makes the performance
drop during the readjustment phase; and 2) the system, when learning a new optimal
policy, forgets the old one, and consequently makes the relearning process necessary even
for dynamics which have already been experienced.

The non-stationary environments in that we are interested in this paper consist on
those whose behavior is given by one among several different stationary dynamics. Each
type of dynamics can be called a mode of the environment dynamics [Choi et al. 2001],
or simply a context [Silva et al. ]. We assume that the context can only be estimated by
observing the transitions and rewards, and that the maintenance of multiple models of the
environment (and their respective policies) is a good solution to this learning problem.

Partial models have been used for the purpose of dealing with non-stationarity
in other works, such as Multiple Model-based Reinforcement Learning (MMRL)
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[Doya et al. 2002] and Reinforcement Learning with Context Detection (RL-CD)
[Silva et al. ]. MMRL is able to deal with continuous time and space scenarios, but re-
quires a fixed number of models. It implicitly assumes that the approximate number of
different environment dynamics is known a priori, which is not always realistic. RL-CD
assumes the number of contexts is unknown and creates new modules on demand, but is
designed to deal with finite states and actions.

In order to overcome those restrictions, we designed a neural architecture which
incrementally builds new modules. Our main hypothesis is similar to RL-CD’s, in which
the use of multiple partial models makes the learning system capable of partitioning the
knowledge into models, each of which automatically assuming for itself the responsibility
for “understanding” one kind of environment behavior. Based on this hypothesis, we
propose, formalize and show the efficiency of our neural architecture for reinforcement
learning, which performs well in non-stationary continuous time and space environments
by continuously evaluating prediction errors generated by each partial model.

This paper is organized as follows. In section 2 we present some concepts about
reinforcement learning in continuous time and space. In section 3 we discuss how to
measure the relative quality of each partial model and how to use it to detect context
changes. In section 4 we present a validation scenario which empirically shows that
our method performs similarly to a hypothetical system which knows the context of the
environment. Some concluding remarks, known limitations and future work are discussed
in section 5.

2. RL in Continuous Time and Space

Reinforcement learning was built over Markov decision processes, and usually the states
of the process are represented as a set of disconnected symbols. However, when dealing
with real-life situated scenarios, such as robotics, one usually has to model the problem
considering that the world states are not enumerable, and that actions and time must be
measured continuously.

One of the most difficult problems in dealing with continuous space scenarios is
that the representation of the value function can no longer be made via tabular methods.
Thus, the state values must be approximated by a function. In order to avoid known
convergence problems, linear approximation must be used [Santamarı́a et al. 1997].

The Actor-Critic is a model-free algorithm which deals with the continuous in-
put space by transforming it into a set of separate states through boxes. Those boxes are
arbitrarily placed in the input space and perform the binary activation of the states. The
continuous version of Actor-Critic [Doya 1996] uses a Normalized Gaussian Network
(NGN) to extract continuous features of the input space with fuzzy activation. The gaus-
sians are uniformly distributed in the input space with fixed parameter, which guarantees
linear training of the free parameters. Doya states that less continuous features than binary
states are necessary to solve a task.

The reinforcement learning with Value-Gradient based Policy [Doya 2000] is a
model-based algorithm which uses the gradient of the value function in respect to the
control signals as an estimate of the greedy action. It is composed by a forward model
and a critic. The forward model represents the dynamics of the environment, and the
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critic estimates the state values. Both use Normalized Gaussian Networks to deal with the
respective continuous input spaces.

Actor-Critic and Value-Gradient methods deal properly with continuous time and
space scenarios. However, since none has been built regarding the non-stationarity of the
environment, both suffer with decrease of performance due changes on the environment’s
dynamics.

3. Context Detection

First of all, we assume that the system contains several modules, and each module has one
partial forward model of the environment dynamics and one local controller. Each partial
model is specialized in a different environment dynamics and the respective controller is
locally optimal. Only one module is active at a time. The instantaneous quality of a mod-
ule is a value inversely proportional to the prediction error of its model. The quality trace
integrates the instantaneous quality over the time and, at each moment, the module with
the highest quality trace is chosen as the current active model. If the quality traces of all
modules are worse than the minimum allowed, the system assumes that the environment
is in a new context. Thus, a new module is created from scratch, which will learn both a
dynamics partial model and the corresponding locally optimal policy to the new context.

The class of non-stationary environments that we are interested in is similar to
the one studied by Hidden-Mode MDPs researchers [Choi et al. 2001], except that, in our
case, time and space are continuous. We assume that the following properties hold: 1)
environmental changes are confined to a small number of contexts, which are stationary
environments with distinct dynamics; 2) the current context cannot be directly observed,
but can be estimated according to the types of transitions and rewards observed; 3) envi-
ronmental context changes are independent of the agent’s actions; and 4) context changes
are relatively infrequent. These assumptions are considered plausible for a broad number
of real applications [Choi et al. 2001], but in case they are not met scalability problems
should be carefully considered and studied.

3.1. Modules of the architecture

The modules of the proposed neural architecture are implemented as independent mech-
anisms of Reinforcement Learning with Value-Gradient based Policy [?]. Since the mod-
ules are independent, at an instant, only the active module contributes to control and only
that module is adjusted. Each module m has two main approximation functions: the
partial model fm(·), and the local critic Vm(·).

The partial model fm(·) of the environment dynamics estimates the change on
state variables ˆ̇xm(t) by the equation 1, where ˆ̇xmi is the prediction made by model m
regarding the expected change on state variable xi given the current state x(t) and action
u(t); bf (·) are the normalized gaussian functions uniformly distributed to cover the state-
action space; Bf is the number of gaussian functions; and wf

m are the free parameters of
the model, which weight the activation of the state-action features.

ˆ̇xmi(t) =
Bf∑
j=1

wfmij b
f
j (x(t),u(t)) (1)
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The estimation of the state value is approximated by the critic Vm(·) according
to equation 2, where vm is the estimation of model m for the value of state x(t) at the
instant t, given by the function Vm(·) and its free parameters wV

m; bV (·) are the normalized
gaussian functions uniformly distributed to cover the state space; BV is the number of
gaussian functions for the critic; and wV

m are the free parameters of the critic, which
weight the activation of the state features.

vm(t) =
BV∑
j=1

wVmj b
V
j (x(t)) (2)

Notice that the gaussian functions bf (·), used by the models, extract features of
the state-action input space, and the gaussian functions bV (·), used by the critic, extract
features of the state input space.

Given the model of the dynamics and the value function, the action um(t) to be
taken at instant t is given by the gradient of the value function with respect to an action
u0, defined as the joint action that assigns zero to all agent’s actuators. The action is
computed as follows:

um(t) = tanh

1

c

∂Vm
(
x(t),wV

m

)
∂x(t)

∂fm
(
x(t),u0,w

f
m

)
∂u0

+ εn(t)

 (3)

where n is a vector with random values in [−1, 1], and ε is the exploration coefficient
which, if zero, makes the action um(t) greedy. Finally, c is a gain coefficient.

The active partial model is adjusted by back-propagating the prediction error, ac-
cording to equation 4, where ηfm(t) is the learning rate for that instant. The model’s
learning rate is computed by ηfm(t) = (1− τm(t)) ηf0 , based on the local stability of the
model τm(t), which is explained in section 3.3.

ẇf
m(t) = ηfm(t)

∂ ˆ̇xm(t)

∂wf
m(t)

T (
ẋ(t)− ˆ̇xm(t)

)
(4)

The active critic is adjusted by temporal difference with exponential eligibility
trace. The temporal difference error is computed by δ(t) = r(t) + T rv̇(t) − v(t), where
r(t) is the current reward and T r is the discount step of rewards. Free parameters of the
critic are adjusted by equation 5, where ηV is the learning rate and emi is the eligibility for
the weight wVmi. Finally, the eligibility values are updated according to equation 6, where
T e is the discount step of eligibility. For further details on the value gradient method, as
well as on adjusting the forward model and the critic, refer to [Doya 2000].

ẇVmi = −ηV δ(t)emi(t) (5)

ėmi =
1

T e

(
∂v(t)

∂wmi
− emi(t)

)
(6)
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3.2. Detecting the context

In order to detect context changes, the system must be able to evaluate how well all partial
models can predict the environment. For each model m, the instantaneous quality is com-
puted under the assumption that the prediction error of state changes are approximately
normal. In equation 7, σm is the mean square error of the state prediction, and τm indi-
cates the local stability for model m, which prevents a new model from being ignored just
for being incomplete. These are explained further in subsection 3.3.

λm(t) = exp

−1

2

(∑
i

ẋi(t)− ˆ̇xmi(t)

σmi(t)

)2τm(t)
 (7)

Figure 1. Effect of the stability on the instantaneous quality function.

Considering the instantaneous quality λm of all models, we can compute the prob-
ability of each model being correct given recent observations. This value is called quality
trace of the model λ̄m, and summarizes the temporal behavior of the instantaneous qual-
ities considering other models. Since λm is proportional to the probability of a model
being correct, we can use this value to activate the best available model.

The problem of using only the relative probabilities is that we do not have a global
indication of how good a model is independently of other models. In other words, even
if all models are bad, one of them would be activated. In order to solve this problem
we define a constant instantaneous quality λ0 which represents a critical value for the
hypothesis that no model is correct. When all models have a quality trace lower than λ̄0,
then we have an indication that no model is sufficiently good and it is necessary to create
a new model to well-represent the non-stationary environment.

The quality trace of each partial model m is computed by equation 8, where α is
a parameter that controls the memory of the trace, that is, past prediction quality will not
be considered if α = 0, and λ̄ will be a complete temporal quality trace if α = 1. Since
we are dealing with non-stationary environments, considering all past prediction errors
might cause a delay on detecting context changes. In the other hand, since two context
may overlap, considering no past predictions at all might be bad choice.

λ̄m(t) =
λm(t)λ̄m(t−∆t)α∑
j λj(t)λ̄j(t−∆t)α

(8)
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The overall algorithm for the context detection is given by algorithm 1. After the
observation of state change ẋ and the reward r, the instantaneous quality is computed for
all models and all quality traces are updated, including λ̄0. Afterwards, we activate the
model with highest quality trace. If the highest quality trace found is the trace of the critic
quality, then a new model is created. After the model selection/creation is performed, the
current model and critic are adjusted.

Algorithm 1 Context detection algorithm
1: mcur ← newModule()
2: M← {mcur}
3: λ̄k(t)← 1

|M|+1
,∀k ∈ [0, |M|]

4: loop
5: Observe state x(t)
6: Perform action um(t)
7: Observe effect ẋ(t) and reward r(t)
8: Compute λk(t)∀k ∈ [1, |M|] by equation 7
9: Update λ̄k(t)∀k ∈ [0, |M|] by equation 8

10: mcur ← arg maxk
(
λ̄(t)k

)
11: if λ̄cur(t) = λ̄0(t) then
12: mcur ← newModule()
13: M←M∪ {mcur}
14: λ̄k(t)← 1

|M+1| ,∀k ∈ [0, |M|
15: end if
16: adjust(mcur, ẋ(t), r(t))
17: end loop

3.3. Local stability and deviation

In order to compute the prediction quality of models, it was necessary to extend the value-
gradient mechanism by adding two new neural structures to each module. These struc-
tures are responsible for estimating local experience χm(·) and local deviation σm(·). No-
tice that the model’s normalized gaussian functions bf (·) are shared by χm(·) and σm(·).

The evaluation of the instantaneous quality assumes that the state changes follow
an approximately normal multivariate distribution with mean at ˆ̇xm and standard devia-
tion given by σm. However, when the model is incomplete or new, deviations from the
expected state are not so relevant since the model is unstable. For these reasons, we use
a stability term τ that prevents the algorithm from creating new models when bad predic-
tions come from incomplete models. If τm = 1, which occurs when the modelm has been
updated with sufficient experience samples, then λm becomes gaussian-shaped in respect
to ẋ(t).

Since the model can be incomplete in some regions of the input space 〈x,u〉, we
say that the stability τm(t) is local, and is computed according to the equation 9, where
χm(t) is the local experience of the model, and T τ is a fixed parameter which represents
the amount of local experience necessary to consider that the model is locally stable.
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τm(t) = 1− 1

1 + 2χm(t)
T τ

(9)

The stability is monotonic in respect to local experience χm(·), which is the inte-
gration of all past feature activations for the same state-action pair. The local experience
χ(t) is computed by the equation 10, where wχmi is the accumulator of experience associ-
ated to model m and gaussian function i. Accumulators are updated by equation 11.

χm(t) =
Bf∑
i=1

bfi (x(t),u(t)) wχmi (10)

ẇχmi = bfi (x(t),u(t)) (11)

The local deviation of the modelm at state-action (x(t),u(t)) for each observation
signal i is estimated by equation 12, where wσmij represents the average quadratic error of
prediction variable ẋj associated with gaussian function bfi . Free parameters are updated
by equation 13, which implements a the moving average of the quadratic prediction error
weighted by the respective gaussian function activation.

σmj(t) =
Bf∑
i=1

√
wσmij b

f
i (x(t),u(t)) (12)

ẇσmij =
((
ẋj(t)− ˆ̇xmj(t)

)2
− wσmij

)
bfi (x(t),u(t))∫ t
0 b

f
i (x(s),u(s))

(13)

4. Empirical Results

In order to evaluate the performance of our algorithm, we test it in a non-stationary sce-
nario with continuous time and space. The validation scenario consists in a RL agent
trying to swing up a pendulum exposed to wind. The direction of the wind changes
along the time, pushing the pendulum either to the right or to the left, but it keeps blow-
ing in a specific direction during many episodes. Since our agent cannot directly per-
ceive the direction of the wind, it perceives the environment as being non-stationary. We
compare our method with the single model-based algorithm with Value Gradient Policy
[Doya et al. 2002], and with a full-aware multiple-model based algorithm which receives
the context information from an oracle. The oracle approach can be thought of as an al-
gorithm with extended sensors capable of perceiving the wind direction, which makes the
environment look stationary.

The effect of the wind on the pendulum is illustrated in figure 2 and its dynamics
is given by equation 14, where the constants µ, m, l and g are the friction, mass, length
and gravity coefficients, respectively, θ is the pendulum angle, u is the torque applied to
the pendulum, and W is the wind force. The task is difficult if the maximum torque is
lower than then the maximum load ml2.
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Figure 2. Non-stationary pendulum scenario.

θ̈ =
−µθ̇ +mglsin(θ) + u+Wcos(θ)

ml2
(14)

In our experiment, we measured average reward received by episode. An episode
takes up to 20 seconds and starts with the pendulum in its rest position π. The episode ends
with success whenever the agent successfully balances the pendulum a position in which
its is higher than cos

(
π
4

)
for at least 10 seconds. Otherwise, the agent fails when the

pendulum is over rotated (out of [−π,3π]). The reward function is given by the pendulum
height r(t) = cos(θ(t)) at each time step, and r(t) = −1 when the agent fails.

In figure 3 we present the results of our performance comparison. We explicitly
change the wind direction each 100 episodes. Since the modules of the context detection
and the oracle approaches are the same, the difference of performance depends on the
model activation. If the context signal is perfectly detected, our approach will perform as
well as the oracle.

Figure 3. Performance for Value Gradient, Oracle and Context Detection.

The critic’s NGN was designed with 9x9 gaussian functions uniformly distributed
to cover the space [−π, π][−5π

2
, 5π

2
], while the model’s NGN was designed with 9x9x2

gaussian functions to cover the space [−π, π] [−5π
2
, 5π

2
] [−umax, umax]. Parameters related

to the independent modules were T r = 1, T e = 0.1, ηV = 5, ε = 0.5, T n = 1 and c = 0.1.
Parameters related to learning the partial models were ηf0 = 20 and T τ = 100. Parameters
related to module activation were α = 0.9 and λ0 = 1%.

694



Since the context detection approach starts with only one model, and the oracle
activates only one model until the first context change, both perform the same as the sin-
gle model based value gradient algorithm in the beginning. At episode 100, wind stops
blowing to left and starts blowing to right. After that first context change, the oracle ac-
tivates a second model and the context detection approach creates a new one. At that
time, the single model mechanism takes advantage of past knowledge to deal with over-
lapped regions of both contexts, while the oracle and the context detection methods need
to learn the new context from scratch. However, around episode 150, both methods with
new models learned to solve the task, while the single model mechanism is confused by
former information where contexts are different.

At following context changes, the context detection architecture performs almost
the same as the oracle approach, which indicates success in context detection. The single
model mechanism, however, presents several losses on performance after context changes,
which demonstrate that some context detection is necessary for that non-stationary task.

Figure 4 shows the instantaneous quality and the quality trace of each model of
the context detection mechanism around the first context change, step by step. Notice that
only model 1 exists at the beginning and its quality trace becomes worse than the trace
of critical value a few steps after the context change, although its instantaneous quality
drops immediately.

Figure 4. Instantaneous quality and quality trace around the first context change.

The second context change is shown in figure 5, where it is possible to see that, as
the context turns back to the first one, model 1 is activated after few observation steps.

Figure 5. Instantaneous quality and trace around the second context change.

5. Conclusions and Future Work
In this paper we have formalized a neural architecture for solving reinforcement learn-
ing problems in non-stationary continuous time and state environments through context
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detection. Our method was validated in a stochastic and noisy scenario. We have em-
pirically shown that it has advantages over the single model-based approach and that its
performance approaches the optimum (ie, the performance achieved with an oracle).

Since we do not assume that the number of models necessary to well-describe
the environment is given a priori, some parameters are necessary to enable the system to
deal with the bias-variance tradeoff. Our algorithm requires that two main parameters be
adjusted: the critical quality λ0, which represents the minimum instantaneous quality that
will be accepted; and T τ , which is related to the time necessary for the model to gain
confidence regarding its predictions in a region of the input space. It is also necessary
to adjust α, which specifies the time window considered in the calculation of the trace
of quality. Although α = 0.9 was shown as a good choice in all experiments, problems
whose state transition dynamics change very abruptly may require lower values of α.

The neural architecture might have problems to deal with environments that
change contexts too fast and have high deviation of observation. In that situations, the
model would not experience sufficiently a context before creating a new one. We think it
might be possible to overcome this limitation by, instead of creating models for the whole
input space, to create sub-models for partial areas of the input space.

We feel that it is still necessary to adjust the method so that it can perceive non-
stationarity in the reward function, and not only in the transition function. This way, we
would be able to deal not only with scenarios with multiple dynamics, but effectively
multiple tasks. Moreover, we think it is possible to relate the estimated current context
signal (that is, the indication of the current model) to construct a hierarchy in the sense of
creating a more abstract state space.
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