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Abstract. In this paper we report on a fuzzy-based ranking system for selecting 

sentences for extractive summarization. The fuzzy knowledge base was 

automatically generated through a genetic algorithm. A corpus of newswire 

texts and their corresponding manual summaries was used to generate fuzzy 

classification rules. ROUGE informativeness measure was adopted as the 

fitness function of such an algorithm.   

1. Introduction 

Automatic summarization involves producing a condensed version of a source text through 

selecting or generalizing its relevant content. As a result, either an extract or an abstract is 

produced. In this work only extracts are focused upon. These are built by copying and pasting 

relevant text segments from a source text into the final text, provided that the original order is 

preserved. 

 We describe SuPor-2 Fuzzy, an automatic extractive text summarizer that employs a 

fuzzy ranking model for selecting the relevant sentences. It is built on a previous version – 

SuPor-2 (Leite and Rino, 2006), which proposes a supervised summarizer for Brazilian 

Portuguese (BP). SuPor-2 is based on Kupiec et al. (1995) machine learning approach and 

employs 11 features combined through a Naïve-Bayes classifier. SuPor-2 Fuzzy aimed at 

overcoming SuPor-2 performance, as reported in (Leite and Rino, 2006), which presents a 

comparison involving other seven summarizers for BP.  

 The following modifications of SuPor-2 were carried out: we exchanged the SuPor-2 

classifier for a fuzzy rule-based classifier, adapted some of its features and exchanged others for 

fuzzy sets. Building the rules for the fuzzy knowledge base was entirely automatic. For that, we 

used both a genetic algorithm and training data. Whenever possible, linguistic resources 

employed in SuPor-2 were kept intact in SuPor-2 Fuzzy, in order to preserve the main linguistic 

features for summarization. 

 The motivation of our work was to verify if a fuzzy classification model would fit well 

for Automatic Summarization (AS), a field where it is seldom used. There is a trend in most 

recent works (see, e.g., Witten and Frank, 2005) to employ Naïve-Bayes, Logistic Regression, 

Support Vector Machines, or other linear ranking methods for the task. This has been even 

evidenced at DUC
1
 2007 (e.g., Pingali et al, 2007; Li et al., 2007). However, there have been 

some criticisms towards the assumptions that underlie those methods. For instance, Naïve-

Bayes assumes that features are statistically independent (Mani, 2001), which is barely the case 

                                                 
1 Document Understanding Conferences. Publications can be found at http://duc.nist.gov/ [March/2009] 
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when text processing takes place. Moreover, we claim that probabilistic classifiers are more 

suitable for the task because an adequate sentence ranking is desired, instead of just predicting a 

class, as we did before (Leite and Rino, 2006). Considering such scenario, we aimed at 

investigating how well a fuzzy model could overcome similar problems and deal with the 

inherent uncertainty involved in pinpointing how likely a sentence should be to compose an 

extract. Our aim is, thus, to define an adequate fuzzy ranking model for extractive 

summarization, as suggested in related areas (see, e.g., Kang et al., 2006). 

 To the best of our knowledge there are few researches that address fuzzy modeling for 

AS. Kiani-B and Akbarzadeh-T (2006), for example, propose a similar approach to ours. 

However, ours differs from that because we employ (a) more features and (b) a specific 

evaluation tool for summarization – ROUGE – as the fitness function for the genetic algorithm, 

as we shall describe later; (c) we used labeled data for generating rules instead of only unlabeled 

data.  For assessing our proposal, SuPor-2 Fuzzy performance was just compared with its 

crisp version (i.e., SuPor-2) using the same training and test data and the same features.  

 The rest of this paper is organized as follows: in Section 2 we describe SuPor-2 feature 

set; Section 3 describes the adjustments made on SuPor-2 feature set for fuzzy modeling; 

Section 4 describes the fuzzy knowledge base, along with the genetic algorithm used in its 

construction. In Section 5 the ranking model based on fuzzy classification is presented. Section 

6 embeds SuPor-2 Fuzzy assessment, followed by final remarks in Section 7. 

2. SuPor-2 Features 

SuPor-2 takes after Kupiec et al.’s (1995) approach on using a Naïve-Bayes probabilistic 

classifier to determine how likely a sentence is to be relevant for an extract. It embeds eleven 

features (F1-F11 below) that address either surface, or linguistic factors that interact with each 

other in order to pinpoint relevance. Surface features are understood here, as those shallow 

constructions that underlie, or are present in, the text. Usually, they may be withdrawn by 

skimming through the text (e.g., word positioning, cue words or phrases, title and subtitles cues) 

or from its varied representations (e.g., a vector resulting from stemming and filtering stop 

words). They may then be used to compute sentence relevance through statistical models or 

other calculations that do not depend directly on processing linguistic knowledge. Oppositely, 

linguistic features are those that relate to linguistic clues underlying the text, may those refer to 

intra- or inter-sentential relations between words, or even to the document structure. Hence, 

differently from the former case, such features are computed through linguistic or discourse 

models defined beforehand. These, in turn, help producing underlying representations of the 

text, which are indeed the ones that are automatically handled to produce a relevance map of the 

sentences. 

 Some of the features depict full well-known AS methods and require language-

dependent resources to preprocess the text (e.g., thesauri, taggers, stoplists, or lexicons). They 

are described as follows (pair-wised features differ only in the preprocessing method)
2
: 

F1 and F2 - Lexical Chaining (Barzilay and Elhadad, 1999). Relevant sentences to include in 

an extract are pinpointed here through signaling the strength of lexical chains. Three sets of 

candidate sentences may be pinpointed using three different heuristics, namely: (H1) select 

every sentence s of the source text based on each member m of every strong lexical chain of 

the text. In this case, s is the sentence that contains the first occurrence of m; (H2) this is 

                                                 
2 This description is given elsewhere (Leite and Rino, 2006). 
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similar to H1, but instead of considering all the members of a strong lexical chain, it uses 

only the representative ones. A representative member is one whose frequency is greater 

than the average frequency of all words in the chain; (H3) a sentence s is chosen by focusing 

only on representative lexical chains of every topic of the source text. Features F1 and F2 

address H3 by identifying topics using either TextTiling (Hearst, 1993) or paragraphs as 

topic units, respectively. 

F3 - Sentence Length (Kupiec et al., 1995). This just conveys the sum of words in a sentence. 

F4 - Proper nouns (Kupiec et al., 1995). This conveys the sum of proper nouns in a sentence. 

F5 - Sentence Location (Edmundson, 1969). This feature takes into account the position of 

both a sentence in the paragraph and a paragraph in the text. 

F6 and F7 - Word Frequency (Luhn, 1958). These mirror the normalized sum of the words of 

a sentence. The words must first be preprocessed through stemming (F6) or generating 4-

grams (F7). 

F8 and F9 - Relationship Mapping (Salton et al., 1997). Using a graph as a representative 

structure of a text, this method aims at signaling the connectiveness between paragraphs and 

is similar to Lexical Chaining. Paragraphs are thus the vertices of the graph. Connectivity is 

expressed through a similarity measure: the higher it is the more connected paragraphs are. 

Three different ways of producing extracts are used to choose highly connected paragraphs 

in order to make an extract more cohesive. They refer to distinct ways of traversing the 

graph, as follows: (P1) a dense or bushy path treats paragraphs as totally independent from 

each other and focuses on top-ranked ones, i.e., the ones that are denser. Clearly, P1 does not 

tackle cohesion properly in considering paragraph independence. (P2) a deep path aims at 

overcoming that by choosing paragraphs that may be semantically inter-related. Only one 

topic, even an irrelevant one, may be conveyed by an extract. Thus, P2 may lack proper 

coverage of the source text. (P3) a segmented path proposes solving both former problems 

by addressing all the topics at once. F8 and F9 address stemming and 4-gramming of words, 

respectively, for pre-processing.  

F10 and F11 - Importance of Topics (Larocca Neto et al., 2000). To identify relevant 

sentences, this method first identifies and classifies topics according to their importance in 

the text. Then it selects sentences for an extract that better correlate with most important 

topics. Thus, it signals how relevant a sentence is to a given topic The more important a topic 

is the more sentences will be considered.   However, to determine the ones that will actually 

be included in an extract, their similarity to their respective topic centroids (Larocca Neto et 

al., 2000) is calculated. The words must first be preprocessed through stemming (F10) or 

generating 4-grams (F11). Values convey the harmonic mean between the sentence 

similarity to the centroid of the topic in which it appears and the importance of that topic. 

All values of numeric features are normalized with respect to the text in the [0,1] interval, 

according to the corresponding metric. For example, F3 considers the number of words in the 

text to normalize sentence length. Table 1 summarizes the domain values of all the features in 

SuPor-2. Lexical chaining (F1 and F2) signals the heuristics that recommend a sentence. 

Sentence location (F5) uses pair-wised letters to signal respectively the positions of a sentence 

within a paragraph and of a paragraph in the text (Initial, Medium, or Final). Finally, 

Relationship Mapping (F8 and F9) addresses which paths are used to select a sentence. 
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Table 1. Domains of SuPor-2 Features 

F# Domains 

F1 

F2 

{‘None’, ‘H1’, ‘H2’, ‘H3’, ‘H1H2’, ‘H1H3’, ‘H2H3’, 

‘H1H2H3’}. 

F3 [0, 1] 

F4 [0,1] 

F5 {‘II’,‘IM’,‘IF’,‘MI’,‘MM’,‘MF’,‘FI’,‘FM’,‘FF’} 

F6 

F7 
[0, 1] 

F8 

F9 
{‘None’,‘P1’,‘P2’,‘P3’, ‘P1P2’, ‘P1P3’, ‘P2P3’, ‘P1P2P3’} 

F10 

F11 
[0, 1] 

3. Adapting SuPor-2 Features for Fuzzy Modeling 

Most systems that use fuzzy rules for reasoning deal only with numeric variables (see, for 

example, Eberhart and Shi, 2007), instead of using categorical values as SuPor-2 does, which 

are in essence crisp. The reason is that the latter may not be suitable to represent uncertainty. 

Aiming at investigating how SuPor-2 would react towards classifying features based on a fuzzy 

model, its feature set had to be reformulated. In doing so, not all the original features could be 

prompted. We also refined some of the remaining ones and included others that were 

considered to be relevant in the past (Leite et al., 2007). Table 2 presents all the features that 

were employed in SuPor-2 Fuzzy. All features are normalized in set [0,1] for non-biased 

measures. The ones in bold refer to novel ones; the ones in italic, to SuPor-2 features that have 

been unfolded into more features.  

Table 2. SuPor-2 Fuzzy Features 

F# Feature 

F1’ Similarity of the sentence to its topic centroid (stemming preprocessing) 

F2’ Similarity of the sentence to its topic centroid (4-grams preprocessing) 

F3 Sentence Length 

F4 Presence of proper names in the sentence  

F5’ TextRank measure 

F6 Word Frequency (stemming) 

F7 Word Frequency (4-grams) 

F8’ Position of the sentence in its paragraph 

F9’ Position of the paragraph in the text 

F10’ Importance of the topic (stemming preprocessing) 

F11’ Importance of the topic (4-grams preprocessing) 

The only features that remained untouched were F3, F4, F6, and F7. The others were modified 

as follows: The categorical representation of the position of a sentence in the paragraph and the 

position of a paragraph in the text were replaced by two other numerical features (F8’ and F9’).  

F8’ signals the relative position of a sentence in its paragraph. F9’ signals the relative position of 

the paragraph considering the whole text.  Lexical Chaining was not employed in SuPor-2 

Fuzzy because we find it difficult to map its heuristics onto numerical entities. This is due to 

using heuristics to select sentences, instead of ranking them.  Features of the Importance of 

Topics method (F10 and F11) were unfolded in two distinct features, and the harmonic mean 

between the sentence similarity to the centroid of a topic and the importance of that topic was 
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dropped of. Such modifications resulted in features F1’-F2’ and F10’-F11’, pair-wised sets 

signaling distinct preprocessing means. 

 Similarly to Lexical Chaining, Relationship Mapping features are in essence categorical 

(paths). They would be difficult to map onto numerical features if there were no possibility of 

representing them through graphs. These made it simple to configure F5’. Actually, we adopted 

TextRank (Mihalcea, 2005), which computes a numerical value that represents the importance 

of a sentence based upon sentence connectedness (sentences as nodes and similarity between 

sentences signaled by edges). First TextRank computes sentence similarity through content 

overlap, and then it uses a random walk model to build a path between nodes, aiming at grading 

the importance of a sentence in the graph. 

4. Fuzzy Knowledge Base 

Designing a system based on fuzzy rules depends upon two phases of utmost importance: (a) 

modeling fuzzy sets that represent relevant variables; (b) determining the fuzzy rules that will 

manage fuzzy inference. Both fuzzy sets and rules partially amount to the fuzzy knowledge 

base. 

4.1. Modeling Fuzzy Sets 

We adopted a standard modeling (e.g., Eberhart and Shi, 2007) regarding fuzzy sets. For each 

feature, 3 uniform triangles depict 3 fuzzy set functions to address a variable membership. 

Linguistic variables assume values in the set {low, medium, high}. Such values pinpoint the 

likelihood of an element (a sentence in our case) to be a member of a set. They are calculated 

through equations 1, 2 and 3 below.  
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4.2. Generating Fuzzy Rules 

A common approach to design fuzzy rule systems is to use the expertise of humans along with 

a trial-and-error approach. This can be very subtle, especially when the number of features is 

large and the problem is complex. Genetic algorithms have been shown to be superior to 

traditional automatic approaches in finding nearly optimal solutions in this complex high 

dimensional search space (Eberhart and Shi, 2007). For this reason, we chose a genetic 

algorithm to determine fuzzy rules in SuPor-2 Fuzzy. It follows the Pittsburgh approach (e.g., 

Herrera et al., 1993; Cordon et al., 1996) in that it encodes a complete rule set in a chromosome. 

The Michigan approach, which is Pittsburgh counterpart –– encodes just one rule per 

chromosome. So, Pittsburgh approach performs better when using slow fitness functions for 

determining fuzzy rules.   
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 Populating the knowledge base was initially carried out by both random rules and rules 

generated by the Wang and Mendel’s method (1992). This employs labeled data. Proportions of 

such rules are respectively 40 and 60% in the knowledge base. 

4.3. Chromosome Encoding 

Each chromosome comprises 100 rules represented by integer numbers that signal both feature 

values and the aimed encoded class. SuPor-2 considers 11 features. Class instances are 

represented as a feature itself (actually, the 12
th
 one in the corresponding vector). So, the 

chromosome vector comprises 1200 elements. Feature values are defined as follows: 

 For a rule antecedent: 0 in a position pi, i=1,…,11, signals that feature i does not appear in 

the antecedent; 1-3 values represent low, medium and high degrees respectively.  

For a rule consequent (Class): 0 indicates the false class, i.e., the class of sentences that 

would not be present in the extract; 1 indicates the true class instead. 

4.3.1. Illustrating Chromosome Encoding 

The vector below shows a partial segment that encodes the rule  

F1=high , F2=medium , F3=low ⇒ class = True. 
 

3 2 1 0 0 0 0 0 0 0 0 1 ... 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12  

4.4. The Fitness Function 

We adopted ROUGE-2 measure (Lin, 2004) as the fitness function. ROUGE recall rate, in this 

case, is calculated on bigrams. It mirrors the informativeness of an extract by correlating it with 

a reference, human made, summary. To evaluate an individual, namely, a sentence that may be 

candidate to include in a SuPor-2 extract, the encoded fuzzy rules are used along the fuzzy 

classifier as described in Section 5. After evaluating all the sentences of a source text, its extract 

is produced. The fitness function of the individual is the ROUGE-2 measure of the produced 

extracts.  

4.5. Crossing and Mutation 

In the evolutionary process crossing and mutation operators are employed. Simple crossing 

(one point) operator was used (e.g., Herrera et al., 1993; Eberhart and Shi, 2007), with random 

crossing point choice.  Non-uniform mutation was employed (e.g., Herreira et al., 1993; 

Eberthart and Shi, 2007). The number of exchanged elements (genes) is randomly chosen up to 

a maximum of 10%.  Each vector element is updated using Equation 4. 
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Variables in [4] are defined as follows: d is a random digit between 0 and 1; ck is the current 

value of gene k; ck’ is the new value for gene k; LS(ck) = 3 if ck is a feature gene, and if ck  is a 

class, then LS(ck) =1); ∆(a,b) returns random digits between a and b. 

4.6. The Genetic Algorithm 

Figure 1 presents a high-level code of the genetic algorithm. P(t) indicates the current 

population at generation t. 
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Begin 

t=0; 

Initialize P(t) with random and Wang-Mendel rules; 

Evaluate P(t); 

while (t < MAX_GENERATIONS) do 

 Begin 

  t=t+1; 

  Elitist selection of P(t) from P(t-1); 

  Apply Crossing operator in P(t); 

  Apply Mutation operator in P(t); 

  Produce text extracts using P(t) rules 

  Evaluate P(t) using the ROUGE measure of the produced extracts; 

 End 

End 

Figure 1. Genetic Algorithm 

5. Fuzzy Model for Ranking Sentences 

As explained in the previous section, for ranking sentences according to their relevance the 

generated fuzzy rules are used. As a result, a true or false class is assigned to each sentence. The 

importance (I) of a sentence (s) is determined through Equation 5: 

∑∑
→∃→∃

−=

FalseRi

i

TrueRi

i

ii

sRsRsI
||

),(),()( ωω  
[5] 

This formula considers the contribution of each rule (R) of the fuzzy rule set for the importance 

of sentence s. Rules indicating that s should not appear in the extract (Ri � False) are 

negatively biased. Function ω pinpoints the strength of the rule activation under sentence s 

constraints. In other words, it measures the compatibility degree between the rule antecedent 

and the whole vector of sentence features. This is accomplished by calculating the t-norm 

minimum for all membership degrees of the sentence features to the corresponding low, 

medium or high fuzzy sets (Klir and Yuan, 1995). 

5.1. Illustrating the Fuzzy Ranking Model  

Here we illustrate sentence ranking based on fuzzy rules considering the three fuzzy sets 

(triangles) modeled by formulas [1], [2] and [3]. 

(a) the fuzzy rule R, defined as  F1=medium, F2=medium, F3=medium, F4=medium, 

F5=high, F6=medium, F7=medium, F8=medium, F9=medium, F10=high, F11=high ⇒ class 

= True; 

(b) sentence s vector, given by s = [F1=0.5, F2=0.5, F3=0.5, F4=0.5, F5=0.6, F6=0.5, 

F7=0.5, F8=0.5, F9=0.5, F10=1, F11=1] 

Through Equations 2 and 3 the membership degrees of s features yield the following values: 

medium(0.5) = 1.0, high(0.6) = 0.2, and high(1.0) = 1.0. The t-norm minimum (ω) below 

signals the strength of the rule activation for sentence s, hence its importance for summarization, 

given by I(s) above. 

ω = min (1, 1, 1, 1, 0.2, 1, 1, 1, 1, 1, 1) = 0.2 
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6. Assessing SuPor-2 Fuzzy 

We could not compare SuPor-2 and SuPor-2 Fuzzy feature sets directly because they are 

substantially distinct (see Tables 1 and 2). So, a modified version of SuPor-2 was considered 

instead, which used the same features of SuPor-2 Fuzzy and the same Bayesian classifier as that 

of SuPor-2 (see Section 2 for details). We also considered GistSumm (Pardo et al., 2003) as a 

baseline, an unsupervised extractive summarizer driven by the gist of the source text. 

 TeMário corpus (Pardo and Rino, 2003) was used for training both, the modified 

SuPor-2 and SuPor-2 Fuzzy systems. It comprises 100 news texts in BP (c.a. 613 words) along 

with their manual, reference summaries. These account for more than 2900 labeled instances 

used as input data for the Wang and Mendel (1992) (see Section 4.2 for details).  

 Training SuPor-2 Fuzzy consisted of evolving the genetic algorithm steps up to 

achieving the fuzzy classification rules (see Figure 1). The main parameters and configurations 

of such an algorithm are listed in Table 3. Usually, the fuzzy literature (e.g., Eberhart and Shi 

(2007) recommends a high crossing rate (85-95%) and a low mutation rate (0.5-1%), as we 

adopted. However, there are no precise guidelines for this, making it difficult for us to 

determine a better recommendation for our domain. The total evolution time for training 

amounted to 168.0 hours, or 7 days. Figure 2 shows how the fitness function (ROUGE-2) 

progressed during evolution with TeMário. Besides, in our case, probably only c.a. 20 

generations should have been enough without significant recall decrease. 

Table 3. Main configurations of the genetic algorithm 

Crossing Rate 90% 

Mutation Rate 1% 

Population size 200 

Maximum number of generations 75 
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Figure 2. Genetic algorithm convergence for TeMário 

Once the classification rules were obtained on the TeMário corpus, we run the three systems to 

produce extracts for a different corpus, the Summ-it one (Collovini et al., 2007). This also 

addresses news texts in BP and embeds manual summaries, but it is smaller than TeMário (50 

texts, c.a. 390 words each). 

 We employed both ROUGE-1 and ROUGE-2 measures for evaluation, mirroring past 

DUCs (2003-2007). ROUGE was used without removing stems and stopwords because it does 

not provide those resources for BP. A 30% compression rate was adopted. Actually, it has been 

approximated to the length of the reference summaries for each extract, following previous 

approaches (Mihalcea, 2005).  Table 4 shows the average recall rates for each summarizer. As it 
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can be seen, SuPor-2 Fuzzy performed better than SuPor-2 modified and the other systems 

considering both ROUGE-1 and ROUGE-2 metrics. These results for the top two systems 

where analyzed with a t-student test of statistical significance: p-values of SuPor-2 modified and 

SuPor-2 Fuzzy are, respectively, 0.12014 for ROUGE-1 and 0.09466 for ROUGE-2. 

Considering ROUGE-2, the differences are statistically significant at a 90% confidence level. 

Both systems proved to differ from GistSumm at a 95% confidence level, and this result is also 

statistically significant.  

Table 4. ROUGE recall metrics 

System ROUGE-1 ROUGE-2 

SuPor-2 Fuzzy 0.74583 0.73859 

SuPor-2 modified 0.73205 0.72323 

GistSumm (Baseline) 0.57669 0.41821 

Although the above results show that SuPor-2 Fuzzy outperforms the standard classifier, 

Bayesian-based, it should be noticed that its evolution phase aiming at generating rules takes 

much longer than the Bayesian method. Despite this, the effort may be worthwhile if we 

consider that the evolution phase is carried just once. Moreover, it may be promising under a 

large-scale summarization setting, a significant trend nowadays.  

7. Final Remarks 

Variations of the experiments described here shall be considered in the future. For instance, 

dynamic computing of ideal mutation and crossing rates in the evolution phase o the genetic 

algorithm may be employed (e.g., Eberhart and Shi, 2007). Since there are no guidelines for 

modeling fuzzy sets, other membership functions shall also be explored, aiming at devising 

anything but trial-and-error methods that may turn our systems scalable. As suggested in (Leite 

and Rino, 2006), automatic feature selection filter (Hall, 2000) can also be used along with any 

classifier for better accuracy. 
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