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Abstract. This work is devoted to present a process control application in an in-
dustrial process of iron pellet cooking in an important mining company in Brazil.
This work uses an adaptive control in order to improve the performance of the
conventional controller already installed in the plant. The main strategy ap-
proached here is known as Feedback-Error-Learning (FEL), in which a neural
network (NN) learns to improve the control actuation of a Proportional-Integral-
Derivative (PID) controller. The advantage of the FEL strategy is to provide
cooperation between the adaptive controller and the conventional controller, in
order that the NN learns not only the actuation necessary for the control, but
new actions can be acquired as consequence of changes in the process. A sec-
ond control strategy is also employed as alternative for the conventional PID
control: a Proportional Integrative Logic Fuzzy Controller (PI-FLC). Fuzzy
controllers have been satisfactorily used in presence of non-linearity or absence
of a precise mathematical model to address the changes in system state. In this
work, due to the unknown mathematic model of the plant and, in order to sim-
ulate the control of the process, a neural model of the plant is also presented.
In a simulation environment, conventional PID, FEL and PI-FLC strategies are
compared and the results are discussed.

1. Introduction
Vale is one of the world’s largest mining companies with operations in production and
trade of iron ore, iron pellets, nickel, coal, bauxite and others [Vale ]. Vale is a company
present in five continents which demand high quality products. Its plant in São Luı́s,
Brazil has a pelletizing plant, which produces iron ore pellets. This plant adds some
substances to the iron ore and then puts it in pellet form. At this stage the pellets do not
have consistent structure, needing a final cooking.

The process of cooking is performed by 21 burner groups fed with oil. The burner
groups are composed of two or four burners, each one controlled by a Proportional-
Integral-Derivative (PID) controller. In general, they perform well, except after stoppage
or resumption of the process.

This paper shows the results of three process control strategies: a conventional
PID, a Fuzzy based controller and the Feedback-Error-Learning control strategy. The
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later has an adaptive characteristic [AlAli and Sugimoto 2006], i.e. a neural network is
added to the control system and acts in harmony with the pre-existing controller. The
Artificial Neural Network learns the inverse model of the controlled object.

The use of fuzzy controllers is often justified by the non-linearity or lack of a
precise mathematical model to address the changes in system state [Lee 1990]. In general,
the rules defining the behavior of a generic controller involve imprecise parameters.

Among the 21 burner groups, one was chosen for the experiments: the burner
group number 8. It is believed that the results can be easily extended to the others groups,
although there are differences among the groups burners. However the most important is
its burning profile, which is set up according to the number of the group.

This paper is organized as follows. In Section 2, the pelletizing process is shown,
in order to better understand the production of pellets by the company. In Section 3, the
theoretical aspects of FEL and Fuzzy control strategies are presented. Section 4 brings
computational results, as well as a comparison between the control approaches. Finally,
Section 5 presents the conclusion and directions for further works.

2. The pelletizing process
The pelletizing process is the agglomeration of ultrafine particles of iron ore and additives,
including lime, bentonite and other inputs for the production of pellets. It may be noted
that the pellets are produced by a technology that allows the recovery of fines generated
during the extraction of iron ore, which were previously considered waste. One of the
important uses of the pellets is in the production of steel.

The production of iron pellets in Vale’s pelletizing plant in São Luı́s, Maranhão,
Brazil can be summarized by Figure 1. This is analyzed from the iron ore in the form of
fines, in the courtyard of the fine company to the production of pellets. After pellets are
fired, they are ready to be shipped by rail or sea to steel mills in Brazil and around the
world.

The cooking of the pellet in Figure 1 is done in an indurate machine, the pellets
pass through the 21 burner groups, which form a burner oven, each group provides a
fixed value of temperature for a specific profile. The temperatures are between 825.6
◦C and 1350 ◦C. The combination of the temperature of each group is called of burning
profile. The burning profile is determined according to the moisture of the pellets and the
temperature of each group increases according to the number of the group. The fuel used
to cook the pellets is mineral oil, whose purpose is to produce heat.

Since there is a process involved, there are machines, procedures, and men in-
volved in this task. Thus, the cooking of the pellets is based on a system of automated
control of temperature, controlled by PID controllers.

3. Control Strategies
3.1. Conventional feedback controller
The Conventional Feedback Controller (CFC) is a servomechanism frequently used in
industrial processes. Its main characteristic is robustness. Normally, the CFC is a PID
type controller. The PID controller is defined by so called PID gains: proportional (Kp),
integrative (Ki) and derivative (Kd) gain. The law of the PID control is in equation 1:
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Figure 1. Pelletizing process flowchart(Adapted from [Vale ])

Ucfc(t) = Kpe(t) + Ki

∫
e(t)dt + Kd

de(t)

dt
(1)

where e(t) is the error measured in an instant of time t, calculated by the differences
between the value of the manipulated variable (output of the process) and the reference.
The PID works leading zero for this error.

In the control problem presented in this paper, the output of the controller is an
electrical signal that activates a valve, expressing the level of openness (0% to 100%),
through in which the oil goes. The output of the plant corresponds to a value of tempera-
ture in ◦C.

3.2. Artificial Neural Networks
The Artificial Neural Networks (NN) are inspired by the biological neuron, and composed
by a set of artificial neurons. The neural network-based learning methods can be super-
vised or not. The supervision is characterized by the presence of a supervisor, who indi-
cates the correct output or an idea of output quality of the network. With non-supervised
learning, the network tries to group outputs, whose inputs are similar. The most com-
mon type of NN is the supervised Multilayer Perceptron (MLP), where the neurons are
arranged in layers [Haykin 1999].

An NN with a hidden layer is able to approximate any continuous function
[Haykin 1999]. The neural network training is characterized by the modification of its
parameters (weights) in order to learn the patterns of input provided during the training,
while the execution phase provides outputs with no changing in its parameters for any
data presented in input layer.

One of the most used algorithms for training MLP network is the so called Back-
propagation [Haykin 1999]. Its goal is to minimize the output error function of the NN. It
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makes use of an input/output set, in which the network learns to do a mapping of input to
output. The algorithm has two phases: forward, that produces the output of the network
and backward, responsible for doing the backpropagation of error and only used in the
training phase, attempting to minimize the neural network output error by the gradient
descending method that confronts desired and obtained output.

3.3. FEL control strategy
The FEL control strategy was proposed by Kawato et al. in 1987 as a way to find the
inverse model of the controlled plant in real-time[M. Kawato 1987]. The FEL uses a
feedfoward neural network online learning a conventional controller actions. Some real-
time iterations of the controller process are used for the FEL neural network (FELNN)
training, in which the strategy is to learn what actions make the PID controller stable.
After training, the feedforward neural network is able to drive in advance, improving the
performance of the control.

The CFC can keep the system stable until the system acquires some knowledge
of the system in control. Sometimes, this is not enough to stabilize the system during the
training of the network, so an appropriate initialization of the FELNN weights allows the
training of the network without instability in the plant.

Another important point to be considered is what should be the signal used as out-
put error to be backpropagated for adjusting the weights in FELNN training. The designer
should know exactly the inverse model of the plant to determine the more efficient signal,
which is a very difficult task. Moreover, if the model could be known, neural networks
would not need be employed.

Due to nonlinear characteristics of the plant, satisfactory FEL behavior has been
obtained by using the CFC output. The FELNN has its weights adjusted by backpropa-
gation of CFC output running as output error. Minimizing it, the FELNN indirectly min-
imizes the output error of the plant, and even if any component integrative, Ki

∫
e(t)dt,

exists in CFC, in theory [Karplus 2006], the FELNN output can be canceled by it. The
FELNN scheme can be seen in Figure 2.

Figure 2. Feedback-Error-Learning scheme

The original FEL scheme was modified by Nascimento Jr. [Jr. 1994] in his PhD
studies. The introduced modifications are: feed the FELNN with reference values through
a tapped delay line and use the reference signal delayed in the CFC. The first modification
of the original Kawato’s idea is to provide the variations of the reference signal via delays,
instead of use of high order differentiators. The second one provides a delayed reference
signal injected into the CFC. This modifications allows the FELNN to learn the delayed
inverse model of the plant, which facilitates its job, because the FELNN can know before
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the CFC any change in the reference signal and therefore provide an anticipating actuating
signal to the plant.

One can cite the advantage of the strategy that there is no removal of the existing
controller, thus avoiding unnecessary costs with personnel training, because the subsys-
tem is easily coupled to the control loop. This also has the characteristic of being an
adaptive control system.

In Figure 2, the added subsystem is an FELNN, but there are other approaches
that can be adopted [Neto 2003]. The learning signal is the output of the controller, Ucfc,
the input signals of the network are free to choose. As we can see in the picture, they are
the reference and plant output, respectively.

Assuming the FELNN is an MLP-type network, its error is the output of the CFC
(teaching signal), and then the goal of the FELNN is to minimize the action of the CFC,
in order to obtain an inverse model of the plant.

3.4. Fuzzy controller
A fuzzy set [Zadeh 1965] is useful when one needs to model sets with ill-defined bounds.
The membership function of a fuzzy set A is a mapping: A : U → [0, 1], where [0, 1] can
be any bounded scale. Fuzzy logic (FL) provides a simple way to deal with ambiguous,
imprecise, missing, noisy input information, making qualitative statements, despite such
vagueness. FL can be seen as problem-solving methodology applicable when data is ill-
defined, but some rules over them are known.

Rules and membership functions can approximate any continuous function to any
degree of precision [Mohan and Sinha 2006]. The expertise knowledge can be employed
to construct a FLC rather than attempting to model a system mathematically. A control
function of a given system can be modeled by a fuzzy rule base and the obtained con-
troller may replace the corresponding PID controller. By your simplicity, fuzzy logic im-
proves control performance, simplifies implementation, and consequently reduces hard-
ware costs.

The fuzzification assigns membership degrees to the system error. The inference
machine, based on in production rules, determines the fuzzy output, representing the con-
trol actions to be taken by the system. The fuzzy output is, at last, defuzzified for corre-
sponding to adjust (increment or decrement) of percentage of oil to burn.

In this work, PI-FLC is used as alternative in pelletizing plant control. As a con-
ventional PI controller, a PI-FLC can be mathematically represented by 2. The PI-FLC
output is not the oil percentage itself, but the positive or negative step for its adjustment.

dUcfc(t) = Kpe(t) + Ki

∫
e(t)dt (2)

In this work, the triangle membership functions are designed for e(t), de(t) and
Ucfc variables. The defuzzification process, in this work, is based on center of gravity
which is so called by considering the output fuzzy sets as a geometric figure over which
the centroid is taken as system output.

The fuzzy inference is performed considering control rules constructed from the
expertise knowledge over the Plant behavior. The Fuzzy Associative Matrix (FAM) is
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generally employed for representing the rules. Figure 3 shows the 7×7 FAM representing
the fuzzy control rules used in this work.

Figure 3. Fuzzy Associative Matrix

4. Results

The control strategies are now compared against previous Enterprise’s PID controller.
First of all, the process of modeling the plant is described, followed by the set of experi-
ments that show the effectiveness of the proposed strategy.

4.1. The plant’s model

The plant model was obtained by a MLP after a supervised training using a log database of
the plant. A neural network was chosen due to possible nonlinearities in the process and
due to the absence of any prior knowledge of the system analytical model. The MLP was
trained by Backpropagation algorithm over the log database of the eighth burner cluster
(burner 8).

Among several MLP configurations we have tested (with or without bias, neurons
by layer, etc) the best obtained result was: input layer neurons, 10, hidden layer neurons,
150, and output layer neurons, 1. The MLP input is composed of the history of the con-
troller output (tapped delay line) and the history of the plant. The output of the controller
is expressed as a percentage, the flow of oil to burn, released by a valve. The MLP output
is a value of temperature in ◦C. The input data in the interval [0, 1380] was normalized to
interval [−0.5, 0.5].

The MLP must be able to generalize the knowledge acquired, or has a small error
for data trained and not trained. The log database was pre-processed, filtering signals
obtained in the plant setup periods. The plant setup signals do not represent a correct
behavior of the plant and hence they shall be discarded from the training database.

The log database was divided into training set and validation set, 65% and 35%
of the entire database, respectively. When the mean validation error reached 0.0172, after
about 150 000 iterations, the training was stopped.

In Figure 4, the generalization phase, for non-trained data is shown, can be ob-
served that MLP, even for non trained data (test data) obtained a good performance, reach-
ing a good generalization power.
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Figure 4. MLP Generalization

4.2. Performace’s comparation of controllers

In this section it is shown a performance comparison between PID controller, FEL strate-
gic and Fuzzy controller. The most common set point used in analysis of performance
is square wave, which is a standard signal for control analysis. Every simulation was in
Simulink and values was exported for MatLab to plot the graphics. The Figure 5 shows a
architecture of PID, 6 of Fuzzy and 7 of FEL. The plant represents a burner group, which
was simulated by a neural network as detailed in last Subsection, its input is limited, so
the cut function provides saturation and its output is burner group’s temperature.

Figure 5. PID

In Figure 5 we can see the input of controller is error signal and output is oil value.
The performance is conduct by gains: Proportional(Kp), integral(Ki) and derivative(Kd),
equation 1. In Figure 6 shows the scheme of Fuzzy. The Figure 7 shows the input of
neural network is composed by set point and signal error.

The main measurement result’s analyzes in control are: Overshoot, Up time and
Stabilized time. So every simulation were done with same configuration only change the
set point. The results for positive edge, negative edge and pulse train are found in Figure
8, 9 and 10, respectively.
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Figure 6. Fuzzy

Figure 7. FEL

Figure 8. Positive edge

We can observe in figures 8, 9 and 10 the steady-state error of FEL and Fuzzy
strategies are quite similar and better than pre-existing PID. However, FEL’s response
time looks better.
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Figure 9. Negative edge

Figure 10. Pulse train

The PID’s gain used was: Kp = 1.5, Ki = 0.01 and Kd = 0.1.

Among many tests with different FEL topology and input signals (set point signal,
plant output or plant error, plant history), the best neural network: MLP, feedforward and
configuration found was 15 − 85 − 1 for neurons in input, hidden and output layers,
respectively. Network’s input is a tapped delay line with 14 neurons is a historical of
signal error and the actual set point, hidden layer uses hyperbolic tangent function and
linear function for output layer. In the training of FELNN it has been preferred to start
weights with near-zero or very small values, because in the first iteration unexpected
results may occur and the plant could receive large value as input. Another important
point is that the FEL training is online, while the plant simulation is performed.
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In the Fuzzy controller, input and output variables were defined by symmetric
triangular-shaped Fuzzy sets. Each variable contains the following term set: Negative
Big (NB), Negative Medium (NM), Negative Small (NS), Zero (ZE), Positive Small (PS),
Positive Medium (PM) and Positive Big (PB). Thus, a default FAM with forty-nine rules
compounds the qualitative control strategy based on expertise knowledge about plant be-
havior. The Ke, Kde and Kdu gains were adjusted experimentally to 0.0275, 1.03 and
0.5, respectively.

5. Conclusion
The FEL control strategy was coupled in the pre-existing PID control system in a simula-
tion environment in which the industrial plant is simulated by another neural network that
models the industrial process. The FEL control strategy is also compared with Propor-
tional Integrative Logic Fuzzy Controller (PI-FLC), a traditional approach in industrial
environment by its simplicity and good performance.

Analyzing the simulation results, the performance of the FEL control strategy
showed that is possible to improve the performance of a pre-existing conventional con-
troller adding to the closed loop a neural network. Concerning PI-FLC, FEL control
strategy had quite similar performance, but FEL’s response time looks better.

For further works, it is planned to investigate other types of FEL control strategy
as to coordinate the addition of other neural networks.
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