
LoopSOM: A Robust SOM Variant Using Self-Organizing
Temporal Feedback Connections

Rafael C. Pinto, Paulo M. Engel
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Abstract. This paper introduces feedback connections into a previously pro-
posed model of the simple and complex neurons of the neocortex. The original
model considers only feedforward connections between a SOM (Self-Organizing
Map) and a RSOM (Recurrent SOM). A variant of the SOM-RSOM pair is pro-
posed, called LoopSOM. The RSOM sends predictions to the SOM, providing
more robust pattern classification/recognition and solving ambiguities.

1. Introduction

Previously, [Miller and Lommel 2006] have proposed a model of the simple/complex cor-
tical cells as the basic processing unit of his neocortex model, the HQSOM (Hierarchical
Quilted Self-Organizing Map). According to this model, the simple neurons are imple-
mented by SOMs (Self-Organizing Maps, [Kohonen 1998]), providing spatial clustering,
classification and recognition, while complex neurons are implemented by RSOMs (Re-
current SOM’s, [Koskela et al. 1998]), allowing for the temporal portion.

However, the RSOM in the SOM-RSOM pair can’t make predictions for the SOM,
as proposed in the Memory-Prediction Framework (MPF) in [Hawkins 2005], which was
the base for Miller’s work. This work proposes to introduce feedback connections into the
SOM-RSOM pair, allowing the RSOM to send predictions to the SOM, providing better
pattern classification/recognition and solving ambiguities. Also, with this improvement,
it perfectly fits into the MPF. This new algorithm is called LoopSOM.

The rest of this paper is organized as follows. The next section briefly explains
the Memory-Prediction Framework. Sections 3 and 4 review the SOM and RSOM algo-
rithms. Section 5 presents the LoopSOM and related works. In section 6, experiments and
results comparing the LoopSOM and the SOM-RSOM pair are shown. Section 7 finishes
this work with conclusions and future works.

2. The Memory-Prediction Framework

Hawkins proposed a framework for computational modeling of the neocortex, the
Memory-Prediction Framework (MPF). Basically it says the basic unit of the model must
do spatial and temporal processing, such that the temporal portion sends predictions to the
spatial portion. The output of the spatial part serves as input to the temporal part, which
recognizes/classifies sequences. The temporal part sends its outputs to the next layer, and
also sends predictions back to the spatial part. The cortex is built up from layers with
many of these processing units.
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Figure 1. HQSOM diagram and the SOM-RSOM pair. The HQSOM may have any
number of SOM-RSOM pairs on each layer and any number of layers.

As higher layers are examined, the concepts become more and more abstract
(holding concepts like “person” or “ball”), and more concrete concepts are on the bot-
tom, like pixels of an image. Another important part of the MPF is that every sensory
modality must use that same mechanism. The sensory inputs are what makes each modal-
ity unique.

There are a few implementations of the MPF by now, like the Hierarchical Tem-
poral Memory (HTM), proposed in [Hawkins and George 2006], and the Hierarchical
Quilted Self-Organizing Map (HQSOM) proposed by Miller. The former is a Bayesian
network implementation, while the later is a neural network implementation, but lacks
prediction connections, as required by the MPF.

The basic processing unit inside the HQSOM is the SOM-RSOM pair (Figure 1),
which will be improved by adding the lacking connections, using the RSOM BMU weight
vector as feedback (Figure 2).

3. Spatial Clustering

A Self-Organizing Map is an unsupervised neural network intended for spatial cluster-
ing, vector quantization, dimensionality reduction and topology preservation. Topology
preservation means that patterns close in input space produce patterns close in output
(map) space. The neuron map forms a code-book of patterns from input space, composed
by synapse weights. The learning takes place in a winner-take-all approach, by selecting

910



Figure 2. Original SOM-RSOM pair and the proposed LoopSOM

the best matching unit (BMU) with the following equation:

‖x(t)− wb‖ = min
i∈VO

{‖x(t)− wi‖} (1)

where VO is the output space, x is the input vector and wi is the weight vector of the
ith unit. After finding the BMU, its weights are updated, as well as the weights of its
neighbors, according to the following update rule:

wi(t+ 1) = wi(t) + γhib(t)(x(t)− wi(t)) (2)

where hib is a neighborhood function such as:

hib(t) = exp

(
−‖Ii − Ib‖2

2σ(t)2

)
(3)

where Ii and Ib are indices of the map units i and b, and σ(t) is the gaussian standard
deviation. Note that σ is dependent on time and normally is implemented into a cooling
schedule. The problem with that approach is that it’s not possible to do online learning.
To fix it, Miller proposed to change the previous equation by the following one

hib(t) = exp

(
−‖Ii − Ib‖2

µb(t)σ2

)
(4)

where µb(t) is the mean squared error of wb compared to the input x(t), and is given as
follows:

µb(t) =
1

N
‖x(t)− wb‖2 (5)

where N is the length of the input vector. This enables the SOM for online learning by
adjusting dynamically the neighborhood size. Another possible approaches for online
learning are the PLSOM (Parameter-less SOM, [Berglund and Sitte 2003]) and its im-
proved version in [Berglund 2009], although Miller’s simpler approach will be used for
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Figure 3. The input pattern is compared to each SOM unit, selecting the BMU. An
activation vector may be produced from the distances vector from the input.

now. Additionally, an activation vector may be produced from the distances vector from
the input x(t) with some function like a gaussian:

yi(t) = exp

(
−‖x(t)− wi‖2

2ρ2

)
(6)

where ρ is the standard deviation of the gaussian. Smaller ρ means more local coding
while bigger ρmeans denser coding [Foldiak and Young 1995]. This vector will be useful
later as input to another map for creating a SOM-RSOM pair. See figure 3 for an example.

4. Temporal Clustering
The Recurrent SOM performs temporal clustering by using decayed traces of previous
vector differences. At each time step a recursive difference vector di(t) is calculated as:

di(t) = (1− α)di(t− 1) + α(x(t)− wi(t)) (7)

where α, 0 ≤ α ≤ 1 is the decay factor, x is the input vector and wi is the weight vector of
the ith unit. The memory becomes deeper as α gets closer to 0, being the original SOM
a special case of the RSOM where α = 1 (no memory). Now the BMU can be found by
using the following equation:

db(t) = min
i∈VO

{‖di(t)‖} (8)

and the new update rule is as follows:

wi(t+ 1) = wi(t) + γhib(t)di(t) (9)

The result is a set of invariant representations for patterns which are correlated temporally.

A problem with the RSOM is that if the input vectors are not orthogonal, some
ambiguity will be created. To overcome this problem, Miller proposed to use the SOM
output y (equation 6) as the input x for the RSOM (equation 7), creating a SOM-RSOM
pair. So, the smaller the used ρ, more orthogonal will be the output and the RSOM will
work better.
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Figure 4. The LoopSOM. Spatial SOM bellow, temporal RSOM above. Activa-
tions in yellow, predictions in purple, coincident activations and predictions in
red/orange. The BMU is highlighted in red. The used inputs are the ones de-
scribed in section 6.2.

5. The LoopSOM

The SOM-RSOM pair works very well for spatio-temporal pattern processing, but it
doesn’t use all of its potential and doesn’t conform totally to the MPF, because of the
lack of feedback connections carrying predictions from the RSOM to the SOM. Such
connections may solve ambiguities on the spatial level and provide higher noise toler-
ance, resulting in a more robust unit. A new implementation, called LoopSOM, aims to
provide a way to implement such connections. In the LoopSOM, the weight vector wb of
the RSOM BMU is used as an activation prediction p(t) for the SOM, as shown in figure
4. So, the prediction is as follows:

p(t) = wbt(t− 1) (10)

The current SOM activation vector y(t) will be combined with the last RSOM prediction
p(t-1), and this new equation will be used to compute the highest activation and find the
BMU:

yb(t) = max
i∈VO

(
ξs(t)yi(t) + ξt(t− 1)pi(t)

ξs(t) + ξt(t− 1)

)
(11)

where ξs(t) is the spatial SOM output confidence computed as follows:

ξs(t) = 1− 1

2

∥∥∥∥ xs(t)

‖xs(t)‖
− wbs(t)

‖wbs(t)‖

∥∥∥∥ (12)

where xs(t) is the input vector and wbs(t) is the weight vector of the BMU. Note that the
input must be processed with the original BMU equation (1) in order to get the confidence
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value, and the SOM learning rate must be kept at 0 while doing it, to avoid interfering with
the new BMU calculation. In the same way ξt(t− 1) can be computed as:

ξt(t− 1) = 1− 1

2

∥∥∥∥ xt(t− 1)

‖xt(t− 1)‖
− wbt(t− 1)

‖wbt(t− 1)‖

∥∥∥∥ (13)

being the variables analogue to the ones on the previous equation. Here the values from
the previous pattern presentation must be used, since they are used to predict the current
activations. Analyzing these 2 factors, some extreme cases can be shown: when both
confidences are similar, current observations and predictions will weight near the same.
When ξs > 0 and ξt equals 0, the original SOM-RSOM pair without feedback is obtained.
When ξs equals 0 and ξt > 0, pure prediction is obtained and could even generate the most
likely sequences decoupled from the environment. This can be seen as a form of fall back
behavior, as proposed by [Cohen 1998], so that the classification can fall back to pure
spatial classification when temporal classification is sub-optimal.

The two confidence values may be used in other ways too. For instance, the learn-
ing rate γ of the RSOM can be a function γ(ξs(t)) (it will learn less if there is error on the
spatial SOM).

Such combination with the RSOM prediction allows the SOM to correctly classify
ambiguous patterns by providing a way to select between 2 otherwise equally plausible
winning nodes.

5.1. Related Works

Another possible replacements for the SOM-RSOM pair are the Anticipatory
SOM (AntSOM, [Swarup et al. 2005a]) and the Recurrent AntSOM (RecAntSOM,
[Swarup et al. 2005b]). The former performs simple predictions using activation coun-
ters and uses only a conventional SOM, while the later makes predictions using Simple
Recurrent Networks (SRN, [Elman 1990]). Possible advantages of the LoopSOM over
them are the adaptive weighting and the explicit invariant representation, but it’s out of
the scope of this work to compare such algorithms.

6. Experiments and Results
To compare the SOM-RSOM pair and the LoopSOM performances, two simple experi-
ments were created.

6.1. Four Points in 2D Space

Four points in 2D space were presented to both algorithms: {(0,0),(0,1),(1,0),(1,1)}. They
are grouped by their first term: group0 = {(0,0),(0,1)}, group1 = {(1,0),(1,1)} and are
presented in a way that points in the same group are more likely to show in the next step
(90% chance), resulting in 50% for each group. After 5000 steps the weights in the SOM
and RSOM are frozen and each SOM unit is labeled with 0 or 1 according to the best
matches for each of them. Then the same points are presented, but now there’s some
chance of showing a totally ambiguous point (0.5,0.5). The tests involved chances within
the range from 0% to 100%, with 1% increments. The parameters used were:

• SOM: size = 2x2, ρ = 0.125, σ = 1, γ = 0.1 (fixed, not adaptive);
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Figure 5. Results comparing the SOM-RSOM pair and the LoopSOM accuracy.
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Figure 6. All 7 inputs shown to the LoopSOM and its respective states. Vertical
on the top , horizontal on the bottom and blank on the right. Note how each group
has only 1 invariant representation on the RSOM.

• RSOM: size = 2x1, ρ = 0.125, α = 0.3, σ = 0.7, γ = 0.01 (fixed, not adaptive);
• For the SOM-RSOM pair, the same implementation was used but with fixed ξs = 1

and ξt = 0.

Results are shown in Figure 5. The LoopSOM dominates the SOM-RSOM pair, although
they are similar on extreme cases (0% and 100%). Note that the errors on the SOM-
RSOM pair approximates the a posteriori probabilities of showing an ambiguous pattern
with equal priors for each group (50%). The LoopSOM adds information to this prior
probabilities, increasing accuracy by moving it from maximum likelihood to maximum a
posteriori.

6.2. 2D Lines
In the next experiment, 7 different 2D visual patterns with 3x3 pixels are presented: 3
horizontal lines, 3 vertical lines and 1 empty pattern (Figure 6). They are grouped as
horizontal, vertical and blank, and patterns in the same group has 90% chance of showing
in next step, resulting in nearly 33% for each group. After 20000 steps the weights in the
SOM and RSOM are frozen and each SOM unit is labeled according to the best matches
for each group. Then the same patterns are presented, but now there’s some chance of
showing a totally ambiguous pattern (a cross). Chances within the range from 0% to
100%, with 1% increments were tested. The used parameters were:

• SOM: size = 3x3, ρ = 0.1875, σ = 0.3, γ = 0.1 (fixed, not adaptive);
• RSOM: size = 2x2, ρ = 0.125, α = 0.2, σ = 0.7, γ = 0.01 (fixed, not adaptive);
• For the SOM-RSOM pair, the same implementation was used but with fixed ξs = 1

and ξt = 0.

Results are shown in Figure 7. They’re similar to the previous experiment, except that the
prior probabilities are nearly 33% (3 groups) now.

7. Conclusions and Future Works
This paper has shown how to create a more robust variant of the SOM-RSOM pair with
little modification. By using the RSOM weight vector of its BMU, a good predictor for
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Figure 7. Results comparing the SOM-RSOM pair and the LoopSOM accuracy on
a 2D line classification task.
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the SOM activations is obtained. Also, it is closer to the MPF than the previous model.

There is still room for many improvements over the LoopSOM, for instance:

• analyze other possible formulas for combining the SOM current activation and the
RSOM prediction, preferably with strong probabilistic principles;
• replace the current predictor (RSOM BMU weight vector) by a SRN;
• replace the RSOM or the entire SOM-RSOM pair by a Recursive SOM (RecSOM,

[Voegtlin 2002]);
• use the PLSOM adaptive parameters;
• replace the SOM-RSOM pairs by LoopSOM’s in a HQSOM and do some com-

parisons.

All of these items will be explored in future works.
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