Decoherencein Search Algorithms
G. Abal!, R. Donangelo!, F.L. Marquezino?, A.C. Oliveira®, R. Portugal?®

!Instituto de Fisica, Universidad de la Republica,
Casilla de Correo 30, Cédigo Postal 11300, Montevideo, Uruguay

2Laboratorio Nacional de Computacao Cientifica,
Avenida Getulio Vargas, 333, Petropolis, RJ, 25651-075, Brazil

3Instituto de Ciéncias Exatas, Universidade Federal de Lavras,
Campus Universitario, Lavras, MG, 37200-000, Brazil

abal @i ng. edu. uy, donangel @f . ufrj.br, ananda2711@nmai | . com

{franklin, portugal }@ncc. br

Abstract. Recently several quantum search algorithms based on quantum walks
were proposed. Those algorithms differ from Grover’s algorithm in many as-
pects. The goal is to find a marked vertex in a graph faster than classical algo-
rithms. Since the implementation of those new algorithms in quantum computers
or in other quantum devices is error-prone, it is important to analyze their ro-
bustness under decoherence. In this work we analyze the impact of decoherence
on guantum search algorithms implemented on two-dimensional grids and on
hypercubes.

Resumo. Recentemente,avios algoritmos ganticos de busca baseados em
passeios aleétios quanticos foram apresentados. Estes algoritm@as difer-
entes do algoritmo de Grover emanos aspectos. O objetive encontrar um
vertice marcado em um grafo ma&pido do que algoritmos aksicos. Uma vez
gue a implementd&p destes novos algoritmos em computadorésticos ou
qgualquer outro dispositivo dntico esh sujeito a errosé importante analisar a
robustez em reldp a descoegncia. Neste trabalho, analisamos a deséoeia
dos algoritmos ganticos de busca em malhas bi-dimensionais e hipercubos.

1. Introduction

After Grover’s seminal paper [Grover (1996)], it is known that a quantum computer can
search an element in a non-structured database quadratically faster compared to a clas-
sical computer. Recently many other search algorithms were developed based on the
discrete-time quantum walk model [Kempe (2003)]. They differ from Grover’s algorithm

in many aspects and may be better suited for practical implementation [SKW (2003),
AKR (2005)].

Quantum walks can be seen as a quantum counterpart of classical random walks
[Kempe (2003)]. They have been successfully applied in several quantum algorithms
[Ambainis (2004), Szegedy (2004), Magniez, Santha and Szegedy (2007)]. It is possi-
ble to describe ambstract search algorithnfAKR (2005)] in a generic regular graph
by using a discrete-time quantum walk with a modified coin operator to search for a

293

marked vertex. Grover’s algorithm can be seen as the simplest example of this proce-
dure. The Shenvi-Kempe-Whaley (SKW) algorithm can be seen as an implementation
of the abstract search algorithm to andimensional hypercube [SKW (2003)] and the
Ambainis-Kempe-Rivosh (AKR) algorithm is an application to two-dimensional grids
[AKR (2005)].

Decoherence and gate imperfections are unavoidable side-effects in any imple-
mentation of a quantum computer. One approach to deal with this problem, with consid-
erable overhead in quantum resources, consists in using redundant encoding and several
layers of error-correction codes. Another approach consists in designing algorithms that
are robust against certain types of errors which may be dominant in a given implementa-
tion. This requires a detailed knowledge of the effect that different kinds of noise have on
the performance of the algorithm. It seems likely that a real quantum computer will take
advantage of both approaches. Decoherence in quantum walks has been considered in
previous works, see for instance [Kendon and Tregenna (2003), Romanedli,(2004),

Alagic and Russell (2005)].

In this work, we study the effect of three different noise models on the AKR and
SKW algorithms without quantum error correction. In two of them we assume phase
errors affecting the modified coin operator. In the other case, we assume broken-link
imperfections affecting the shift operator. The influence of errors in the AKR algorithm
has not been analyzed before. This work presents the first results in this direction. Li and
collaborators [Li, Ma, and Zhou (2006)] have analyzed the effect on the SKW algorithm
of gate errors in the coin operator assuming a perfect shift operator. In this work we
complement those results by analyzing errors in the shift operator.

The structure of the paper is as follows. In Section 2, we review Grover’s algo-
rithm and introduce the notation used in this work. In Section 3 we review some basic
concepts of search algorithms based on discrete-time quantum walks. In Section 4, we
describe the noise models studied in this work and review the broken-link type of noise
[Marquezino, Portugal, Abal and Donangelo (2008)]. In Section 5, we review the SKW
Algorithm. In Section 6 we review the AKR Algorithm. In Section 7, we describe the
methodology used to study each of the noise models and give the results of the numerical
simulations we performed for the SKW algorithm. In Section 8, we present the results of
the numerical simulations for the AKR algorithm. In Section 9, we present our conclu-
sions.

2. Grover’sAlgorithm

In this section we briefly review Grover’s algorithm [Grover (1996)] and the notation used
in this paper. For further details see [Nielsen and Chuang (2000)]. Consider a quantum
computer ofn quantum bits (qubits). Quantum Mechanics tells us that its state is de-
scribed by a unit vector in a vector space of dimengios 2". The simplest orthonormal
basis for this vector space{§0), [1),--- ,|N — 1)}, where|i) is a vector ofNV entries all

of them zero except the entiy 1 which is 1. This basis is callecomputational basis
Suppose that the state of the quantum computer in a given instant of time is the vector
|1), then

¥) = Z ai) (1)

294

where the coefficients; are complex numbers that must obey the constraint

N-1
> e =1. (2)
=0

It is possible to prepare the quantum computer at the beginning of an algorithm in any
state|i). The algorithm must be a sequence of applications (multiplication8) ef N
unitary operators (matrices),, - - - , U;. So, at timef, the state of the quantum computer

IS

W) = U~ Uili). ®3)

A matrix U is unitary if UUT = I, whereU' is the transpose conjugate@fand/ is the
identity matrix.

Since the quantum computer is a physical system, one can perform measurements
to determine the state)). Quantum Mechanics tells us that the result of a complete
measurement in the computational basis will aéth probability|«;|*. The measurement
does not allow one to find the coefficients that are needed to describe the vector.
Instead, one gets a random number in the{¢et-- , N — 1} with the corresponding
probability distribution{|ao|?, - - ,|ax_1|>}. A complete measurement means that all
qubits are measured yielding either 0 or 1 each. One gets a binary number that is converted
to the decimal notation. A partial measurement consists in measuring a fraction of the
qubits.

A search algorithm, such as Grover’s algorithm, aims to determine whether an
elementi, belongs to non-structured database or to determine the position of an element
in a non-sorted database. The easiest way to pose this problem is in the following form.
Suppose that the domain of functigns {0, --- , N — 1} and the image is

f(x):{l if 2 = i, @

0 otherwise

Suppose that we ask a friend to implement the funcfian a classical computer and
there is only one value of such thatf(x) = 1. We can obtain the image of any input
value by employingf. What is the complexity of the best algorithm that finds the value
of = such thatf (x) = 1? The complexity in this case is measured by the number of times
we employ the functiory. If we do not know any equation fof nor any details of the
implementation off, the only way to find out thaf(i;) = 1 is through an exhaustive
search. The complexity of the best classical algorithm(i8/).

In a quantum computer, the implementation of functipmust be performed
through a unitary matrix, which we cdll;. The definition ofU; is

|z)|0) otherwise

Uyl)|0) = { ()

We suppose that the quantum computerhad qubits. So the output of the functighis
added to a second register of 1 qubit. We again ask our friend to implémetitis time
in a quantum computer. What is the complexity of the best quantum algorithm that finds

295

296

the value ofr = i,? Grover's algorithm require@(v/N) applications of/; to determine
the valueiy with a very small margin of error.

The idea behind the algorithm is to start the quantum computer in a known state,
then apply a sequence of unitary matrices that results in a state that has a large overlap
with stateliy). If the state of the quantum computer has a large overlap with,), that
is (¥]ig) =~ 1, the result of the measurement will ewith high probability. The notation
(1| means the transpose conjugatewf.

Grover's algorithm works as follows. Preparéra+ 1)-qubit quantum computer
in state|yy) = [0)[1). Apply H®"+Y to |,). H is the Hadamard matrix ang is
the tensor product, see [Nielsen and Chuang (2000)]. The resuiltlis= |s)|—), where
=) = (10) - 1))/v2 and

7). (6)

Now applyU! V™1 to |4,), where
U= ((2]s)(s| — In) ® L) Uy.

In the last step, measure the first register to obiaimith probabilityl — O(1/N).

3. Quantum Walk based Search Algorithms

Quantum walks generalize the concept of classical random walk. A classical walk is a
prescription of how to move, conditioned to the value of a random variable. If the walker
lives in a regular graph of degréethe random variable must havevalues, usually with

the same probability/d (a balanced walk). The edges of the graph incident to a vertex
must have labels from 0 ©0— 1. If the walker is in vertex and the result of the random
variable isj, than the walker moves to the vertexthat is connected to by an edge of
label j. This procedure is repeated again and again. The result is a random walk on the
graph. In a one-dimensional lattice, one can toss a coin and move to the right if the result
Is heads, or to the left if the result is tails.

In a quantum setting, both the toss of a coin and the shift of the walker must
be performed by unitary operators. In a regular graph of dedrdabe vector space
where the walk takes place i8¢ ® Hy, whereH is the Hilbert space spanned by
{]0),---,|d — 1)} representing the coin space ahg is the Hilbert space spanned by
{]0),---,|V — 1)} representing the vertex space, where the number of vertices. The
usual form of the evolution operator is

U=5(C®I). 7)

Here,C is ad x d matrix that acts only on the coin spadeis the identity in the vertex
space and is the shift operator given by

Sl) = 1)), (8)

wherev’ is the vertex that is connected ¢#dy edge;j. Note that the coin operatd@r is
the same for all vertices. The walker starts at some initial configuration dalleénd at
timet its state isJ*|1).

Quantum walk search algorithms are based on a modification of some standard
quantum walk given by/. The analysis of the new walk depends on what happens in
the original non-modified walk. Suppose that we would like to search for vegtekhat
vertex must be marked somehow. One marks this vertex using a modified coin operator.
The new coin operator must distinguish the marked vertex from the rest The new coin is
defined by

C" = (=1) & |vo) {vo| + C'® (I = |vo){wol)- 9)
This new coin operation” defines a new evolution operator giveny= S C".

The most used coin is called Grover’s coin and it is the real unitary operator far-
thest from the identity [Moore and Russell (2002)]. It is definedCas= 2|s)(s| — I,
where|s) is the uniform superposition,

U

-1

|s) =). (10)

&
QU

Il

o

i

For this coin, all directions have the same weight. Using Grover’s coin in Eg. (9), one
obtains
U,:U(I_2|8700><8700|)' (11)

It is possible to perform a very general analysis of search algorithms on graphs if one
demands some properties framm[AKR (2005)]. These properties are: (L) must be

a real unitary matrix, (2 must have only one eigenvector with eigenvalue 1, and (3)
this eigenvector must be the initial state of the algorithm. &histract search algorithm

works as follows. Suppose thito,) = |¢) and letexp(icr) be the eigenvalue @f” with

the smallest angle among all eigenvalue§ oflf U’ has eigenvalue 1, the initial condition

and the evolution of the walk must be in a space orthogonal to the eigenspace associated
with eigenvalue 1. The algorithm consists in applyliig'z=! to |¢,) and measuring the
vertex space.

Grover’s algorithm is the simplest example of form (11). Two new search al-
gorithms in this framework have been analyzed in detail. The first one is a search on
hypercubes (SKW), which we describe in Sec. 5. The second one is a search on two
dimensional grids (AKR), which we describe in Sec. 6.

4. Decoherence models

In an actual physical implementation, operators are error-prone. It is important to deter-
mine the robustness of an algorithm to errors in its implementation. In quantum search
algorithms, there are three key operators: the original c6ip the coin used in the
marked vertex{ 1) and the shift §). We analyze the impact that errors on each of these
operators have on the algorithm’s performance.

Phase errors on the coin operator affecting the marked node can be implemented
by replacing—1I by N
Coy () = 0T (12)
with ¢ € [—m,7]. The perfect coin operater/ on the marked vertex is recovered for
0 = 0. We say that the error is systematic when the phase @lieoconstant in each step

297

(model 1), and that the error is random when the phase énoeach step is a Gaussian
random variable with zero mean and standard deviatiimodel II).

Phase errors on the coin operator for the unmarked nodes can be implemented by
rewriting C' as B '
C(0) =1 —(1—e™)s)(s] (13)
with § € [—x, 7]. The Grover coin operator is recovered fof 0.

The effect of phase errors in the original Grover’s algorithm was analyzed by
Long and collaborators and, later on by Shenvi and collaborators [letngl. (2000),
Shenvi, Brown and Whaley (2003)]. The latter authors investigated the importance of the
scaling of phase errors with the size of the database]n a recent work, Li and col-
laborators [Li, Ma, and Zhou (2006)] studied the effect of an imperfecn the SKW
algorithm. The operators [(acting on the marked vertex) asdwere supposed to have
no errors.

Errors in the shift operatof can be implemented by randomly opening links
between connected vertices with probabilityper unit time (model Ill). This broken-
link noise model has been previously considered for a quantum walk on a line and on
a plane [Romanelliet. al. (2004), Oliveira, Portugal and Donangelo (2006)], and on the
hypercube [Marquezino, Portugal, Abal and Donangelo (2008)]. To implement this kind
of error we generalize the shift operatSrsuch that no probability flux is transferred
across a broken link. This modified shift operator is unitary for any number of broken
links in the lattice. At each time step, the topology of the graph is defined, opening each
link with probability p and performing the shift to the neighboring vertex only if the link
is not broken. The originad operator is recovered for= 0.

5. SKW Algorithm

The quantum search onrdimensional hypercubes has a Hilbert spage® Hp, where

Hc is an-dimensional Hilbert space associated with a “quantum coin”pds a2"-
dimensional Hilbert space associated with the vertices of the hypercube. A baiig for
is{|d)}, for0 < d <n—1and a basis foHp is {|z,_ 12,2 - z0)}, fOr binaryz,. In

a hypercube two vertices are connected if, and only if, the corresponding binary strings
differ by one bit.

The generic state of the quantum walker is
2
(W) =D tdaz(t)ld, B), (14)

wherey,.z(t) € Cand> """, 3" |1a.z(t)]*> = 1. The evolution operator for one step of
the walk isU = S (C' ® I), whereS is the shift operator an@' the coin operator acting
in He and[is the identity inH . The shift operator can be written as

n—1
S=Y Y "ld. 7@ é)d 1, (15)
d=0 ¥

xT

wherea is the bitwise binary sum between binary vectors, &nid a null vector except
for a singlel entry in thed-th component. The coin operator is given by

C = 2|s9) (s — 1, (16)

298

where[s®) = —- S~ |d) is the uniform superposition over all directions.

In the SKW search algorithm, the initial state is the uniform superposition of coin
and spatial eigenstatése., |1) = |s¢) ® |s”), where|s”) is the uniform superposition
over the2" nodes of the hypercube. Note that a single searched state is contajs€g in
with an amplitudel /v/2". The initial statgv,) is an eigenstate df with eigenvalue 1.

The quantum search (SKW), as proposed by [SKW (2003)], is based on a modified coin
operator of the form
C'=C®I—(I+C)®]|0)(0] (17)

Without loss of generality, we assume that the searched node is Igbeldthe detailed
analysis of this algorithm shows that af@r/ﬁ = O(V/N) iterations, a measurement
of the position of the walker yields the marked state with success probag)l}lit@(l /n)
[SKW (2003)].

6. AKR Algorithm

The quantum search omdN x /N grid has a four-dimensional Hilbert spak&: for
the coin and av-dimensional Hilbert spac# » for the IV lattice sites. A basis fot
is {|d,j)}, for0 < d < 1and0 < j < 1. Variabled sets the direction of the walk,
d = 0 for horizontal shift andi = 1 for vertical shift. Variable; sets whether the
walker moves forwardsj(= 0) or backwards{ = 1). A basis forHp is {|ng, n1)}, for

0 < ng,n1 < v/N. The boundary conditions are periodic.

The generic state of the quantum walker is

1 VN
|\I/(t)> = Z Z ¢d7j;no,n1(t)|d>j>‘n07nl)' (18)

d,7=0ng,n1=0

The action of the shift operator on the computational basis is
S|d, j)no,m1) = |d. j @ 1)|ng + (=1)8a,0,11 + (=1)704,1), (19)

where is the binary sum. Notice that there is an inversion from backwards to forwards
and vice-versa after the action of the shift operator. This is a modification of the standard
shift operator and it is absolutely necessary to have a quadratic speedup over the optimal
classical algorithm.

The initial state is the uniform superposition of coin and spatial eigenstaegs,
[o) = |s¢) @ |sT), where|s”) is the uniform superposition over th€ sites of the grid

and
1

1
C\ .
[9) =5 2 1d4). (20)
d,j=0

The coin operator on unmarked vertices is given by Eq. (16) and the modified coin oper-
ator is

C/:C®[_(I+C)®|n07nl><n07nl‘7 (21)
where(ng, n,) is the marked vertex. The evolution operatotis= S C’ and must be
appliedO(v/N log N) times. The overlap between the final state and the marked ver-
tex isO(1/4/log N). In order to improve the probability of finding the marked vertex,

299

it is necessan(y/log N) rounds of the algorithm yielding an overall complexity of
O(v/Nlog N). A very recent paper [Tulsi (2008)] improved the overall complexity to

O(vNTog N).

7. Resultsfor SKW Algorithm

Fig. 1 shows the probability of finding the walker at the marked node as function of the
number of steps, for each noise model. In the left panel we compare the results for the
ideal case, without noise, with those for noise models | and Il. In the right panel we
compare the ideal case with the evolution under noise model Ill. All plots correspond
to a hypercube of dimensiom = 8. For model |, we took a phase errér= 0.3, the
standard deviation in model Il was = 0.3 and the probability of broken links per unit
time (model Ill) wasp = 0.02. Note that the peak of probability for the systematic
error (model 1) occurs earlier than in the ideal case with zero noise. The behavior of
the algorithm under noise from model | affecting the coin operator at the marked node
(—1) is similar to the one observed in [Li, Ma, and Zhou (2006)], in which the operator
C was affected. Although random models Il and Il correspond to different kinds of noise,
they result in similar patterns. In both cases the first maximum in the probability occurs
approximately at the same number of steps as in the case with no noise, and it reaches a
lower value. Subsequent peaks undergo a gradual attenuation with the number ef steps

probability

0.45

04
035 |
03
025 |
02t
015 |
o1t [

0.05 -

" Ideal —
Model I - o
Model IT -

10 20 30 40 50 60 70 80 90 100
step

probability

0.45

04 -
035 +
03 -
025 +
02t ;"‘;
oast
01 f

0.05 [

" Ideal —
Model IIT -, -

10 20 30 40 50 60 70 80 90 100
step

Figure 1. Left panel: probability at the marked vertex as a function of the number
of steps s comparing the ideal case with both systematic (¢ = 0.3) and random
(o = 0.3) errors. Right panel: the same for broken-link errors with p = 0.02.

The stopping time in the case without noise corresponds to the first maximum and
this point is7v2"~! ~ 18, for n = 8. In the presence of noise it is better to stop the
algorithm before this point and to rerun to find the correct result. If the probability to
obtain the correct result in one runps then the expected number of times of trials is
1/p. If the computational complexity of one run@+/N) then the overall complexity is
O(vV/N/p). If p does no depend oN, it is not going the change the complexity. Let us
define the algorithmic cog{s) as the overall cumulative number of steps needed to find
the desired state,

(22)

where s the number of steps before the final measurement is taken in one run of the
algorithm. In Fig. 2 we show the cost functianis), for the different noise models. In the
case of a systematic phase error, the cost function has a well-defined mininaumiat

It is clearly convenient to stop the algorithm before the peak probability is reached, in

300

either the ideal case or in the case with noise. For the other noise models, and also in the
case without noise, the cost function has a very shallow minimum, and it increases very

slowly with step number after its minimum. However, even in these cases, these results

suggest that it is advantageous to stop the algorithm before the noiseless probability peak
is reached, and to repeat it more times, as needed.

350

Ideal
Model I -

300 Model II -
Model IIT

250

200

cost

150 |

100 |

50 -

0

step

Figure 2. Cost ¢(s) from Eqg. (22), vs. number of steps, for the noiseless search
algorithm and for the algorithm with the three different noise models described
in the text. The hypercube considered has dimension n = 8.

In Fig. 3 we observe the probability of reaching the marked vertex as a function
of the noise strength, as represented by the three upper curves. In the left (right) panel
we have the results for model | (model Il). Note that the optimal phage 4s 0 or
o = 0, i.e., when—I is used in the marked node as in the standard algorithm. The
plot also shows that the algorithm is very sensitive to noise from operational errors, if
no error correction code is used. The three lower curves represent the highest probability
among the unmarked vertices. We observe that, as the phase error increases, the difference
between the maximum probabilities at marked and unmarked nodes becomes smaller. In
this case, we cannot distinguish the right solution and the algorithm is no longer useful.
The noise generated by systematic errors (left panel) seems to play a more significant role
in the algorithm than the noise generated by random errors (right panel).

0.45

0.45 T
n=6

04 Jm | 04 P2
N n=10 - D

035 [iY 035 F 0

0315 % 03

025 - 025 -

probability
probability

02 i 02 |

0.15 - 0.15 -

0.1 r 0.1

0.05

0.05 fre

o e 0 L L L L L
0 0.5 1 L5 2 2.5 3 0 0.5 1 L5 2 25 3

phase stardard deviation
Figure 3. Left panel: Results for model I. Right panel: Results for model Il. Up-
per three curves: Highest probability at marked vertex as a function of the noise
strength parameter for three values of the dimension of the hypercube n. Lower
three curves: Highest probability at the unmarked vertices, using the same con-
vention for the dependence of the dimension of the hypercube.

In Fig. 4 we have the results for model Ill. In the left panel, we observe the highest
probability at marked vertex as a function of the broken-link fat&s represented by the

301

three upper curves. The three lower curves represent the highest probability among the
unmarked vertices. In the right panel, we have the highest probability at the marked vertex
as a function of the dimensian of the hypercube. In this case, the probabilities decay

as the dimension of the hypercube is increased, which is similar to the result obtained in
[Li, Ma, and Zhou (2006)] for noise affecting the coin operator at unmarked sites.

0.5

045 |
04 T)

035
03

0.25 -

0.25 -
02|

probability
probability

0.2 |

0.15 - 015 L

p=0 ——
!] 0.1 | p=0.001 ———
""""""""" eI A e S0 -
005 FEE : ol T
0 =003 - ‘ |
0 0.005 0.01 0.015 0.02 0.025 0.03 6 g 10 2 " 6

broken-link rate n

Figure 4. Results for model lll. Left panel: similar to Fig. 3 as a function of the
broken-link rate. Right panel: highest probability at marked vertex as a function
of the dimension n of the hypercube.

In order to estimate how errors of model Il change the complexity of the algorithm
we use a formula that scales wiff in the form¢ = 1/N° in Eq. (12). In Fig. 5 we
plot the scaled cost, which is the logarithm to basef the algorithmic cost given by
Eq. (22), against error parametefor several values of. Recall that the complexity
of SKW algorithm isO(N%?) and its success probability is2 — O(1/n). Hence, for
large values of and N, we should obtain a scaled cost close)ts, corresponding to
the complexity of the noiseless SKW algorithm. Our plot shows a scaled cost close to
0.6, which is consistent with the values of considered. This means that > 1, the
SKW algorithm with error has the same complexity of the noiseless SKW algorithm. For
0 < 1, the noise rate increases and the algorithm gradually looses efficiency in relation
to the noiseless search. Fore —0.1, the scaled cost is close towhich means that the
quantum algorithm has the same complexity of the classical sea(éh). Foré < —0.1,
the scaled cost is higher thanwhich means that the performance of the quantum search
Is worse than the classical search.

1.5

14 B =10 s 1
n=12 *
13 n=14 o
12 P
5)
% 1.1 \\
8 1 S
© MNE
2 09 A
S
208
N
0.7 R — —
0.6
0.5
05 -025 0 025 05 075 1 125 15 175 2

4

Figure 5. Logarithm (base N) of the algorithmic cost as a function of scaling
parameter § for model Il comparing different dimensions.

302

8. Resultsfor AKR Algorithm

The behaviour of the maximum probability at the marked node in the AKR algorithm
follows a similar pattern as in the SKW algorithm. The main difference being that for
AKR the maximum probability decreases igsincreases, while for SKW the maximum
probability remains close tb/2. The numerical results for the cost in the AKR algorithm
also show that in the presence of imperfections it is better to stop the algorithm before the
theoretical stopping time.

Fig. 6 shows the maximum probability at the marked node as function of the noise
strength. In the left (right) panel we have the results for model | (model II). This figure
should be compared to Fig. 3. Note that the number of nodes of the grids corresponds
to the number of nodes of the hypercubes. The curves for the AKR algorithm are very
similar to those for the SKW algorithm and we draw similar conclusions for both cases.
The main difference is the distance between the curves, a consequence of the fact that in
the AKR algorithm the maximum probability at the marked node drops when we increase
N.

0.35 T T 0.35 T T
N=8x8 N=8x8

N=16x16 - N=16x16 -
03 N=32x32 - 1 03 N=32x32 -meee R

025 | 025 po

02 02

probability
probability

0.15

0.1 |

0.05

phase standard deviation

Figure 6. Left panel: Results for model I. Right panel: Results for model Il. High-
est probability at marked vertex as a function of the noise strength parameter for
three values of the dimension of the grid.

In Fig. 7 we show the results for model 1. In the left panel, we observe the
highest probability at the marked vertex as a function of the broken-linkptata the
right panel, the horizontal axis is in log scale. These results should be compared with
Fig. 4. The probability drops faster in the AKR algorithm than in the SKR. This was
predicted in [AKR (2005)], where it is shown that the probability at the marked node

scales a®)(1/1/log N).

In Fig. 8 we plot the scaled costg, c(s) againstd, which is the analogue of
Fig. 5 for the AKR algorithm. Recall that the cost in the AKR algorith®isV®> log N).
Hence, for large values @fand /V, we should obtain a scaled cost a little bit above
corresponding to the complexity of the noiseless AKR algorithm. The scaled cost is not
exactly the power ofV because the cost has the tdrg N. Our plot shows a scaled cost
close t00.8, which is consistent with the values &f considered. From the figure we see
that ford > 1/2, the AKR algorithm with error has the same complexity as the noiseless
AKR algorithm. For§ < 1/2, the noise rate increases fast enough such that the algorithm
looses efficiency in relation to the noiseless search. When we dedérghgescaled cost
approaches 1, which means that the quantum algorithm has the same complexity of the

303

0.35 ‘ |
N=8x8

N=16x16 -

N=32x32 -]

03 r
0.25 Fo.

02 f.

probability

0.15 |

probability

0.1 r 0.1 Fr==e

005 | 1 005 |

0 :
0 0.005 0.01 0.015 0.02 0.025 0.03 8 16 32 64 128 256

broken-link rate n

Figure 7. Results for model lll. Left panel: highest probability as a function of the
broken-link rate. Right panel: highest probability at marked vertex as a function
of the dimension log N of the vN x v/N grid.

classical search)(N). Ford < 0, the scaled cost is higher thanwhich means that the
performance of the quantum search is worse than the classical search. Note-th#A2

is the transition point in the AKR algorithm, while = 1 is the transition point in the
SKW algorithm. For comparison, note that [Shenvi, Brown and Whaley (2003)] obtained
0 = 1/4 as the transition point in the original Grover’s algorithm.

115
N=16x16 —+—

N=32x32 ---x--
N=64x64 -
11 N=128x128 B

scaled cost [logy]

09 3
¢
\
0.85 &

R

0 0.5 1 15 2
[

Figure 8. Logarithm (base N) of the algorithmic cost as a function of scaling
parameter § for model Il comparing different dimensions in AKR algorithm.

9. Conclusions

In this work, the effect of imperfect quantum operators on search algorithms based on
quantum walks has been investigated. We have considered both systematic and random
phase errors in the coin operator. The effect of randomly broken links affecting the shift
operator has also been considered. This kind of error directly affects the spatial propa-
gation of the walker. We have considered the search of a marked vertex on hypercubes
(SKW algorithm) and two-dimensional grids (AKR algorithm).

For the SKW algorithm, we found that the overall effect of noise in the coin op-
erator for the marked node is similar to that for the imperfect coin operator acting on
unmarked nodes considered in [Li, Ma, and Zhou (2006)]. There are also many similari-
ties with the AKR algorithm. The overall qualitative effect of noise seems to be similar in
all search algorithms considered. On the other hand, we have obtained quantitative results
for the tolerance of the algorithms to errors.

304

In the context of Grover’s search algorithm, it was shown analytically that phase
errorsd scaling as /N?, for § < 1/4, modify the complexity of the algorithm 0(N'~2°)
[Shenvi, Brown and Whaley (2003)]. For> 1/4, the complexity of Grover’s algorithm
with errors is equal to the complexity of the noiseless ca¥e/N). If § < 1/4, the
advantage over a classical sear©li}V), is progressively reduced. df= 0, i.e., constant
error, the complexity of Grover's algorithm is equal to the complexity of the classical
search. We have also considered this setup in the context of the SKW and AKR search
algorithms. Our numerical simulations show that the transition point for AKR is around
0 = 1/2 and for SKW it is around = 1. Forj below these threshold values, the algo-
rithm gradually looses efficiency until becoming worse than the classical case at around
0 =0.

Our numerical results show that it is possible to improve the efficiency in all cases
(with or without noise) if we stop the search algorithm before the number of steps pre-
dicted theoretically. In this case, more than one round of the algorithm is needed, keeping
the overall cost smaller than when using the theoretical stopping point.

Acknowledgments. F.L.M., A.C.O. and R.P. acknowledge financial support of CNPq.
G.A. and R.D. acknowledge support from PEDECIBA-Uruguay. We acknowledge sup-
port fromEdital CT-INFON.07/2007 —Grandes Desafios da &ncia da Computap no
Brasil 2006-2016

References

G. Alagic and A. RusselDecoherence in quantum walks on the hypercigs. Rev. A
72 (2005), 062304.

A. Ambainis,Quantum walk algorithm for element distinctng3sceedings 45th Annual
IEEE Symp. on Foundations of Computer Science (FOCS), 2004.

Andris Ambainis, Julia Kempe, and Alexander RivoSljns make quantum walks faster
SODA ’'05: Proceedings of the sixteenth annual ACM-SIAM symposium on Dis-
crete algorithms (Philadelphia, PA, USA), Society for Industrial and Applied Math-
ematics, 2005, pp. 1099-1108.

L. Grover,A fast quantum mechanical algorithm for database seafchc. 28th Annual
ACM Symposium on the Theory of Computation (New York, NY), ACM Press,
New York, 1996, pp. 212-219.

J. KempeQuantum random walks — an introductory overvi&@ontemp. Phyi4 (2003),
no. 4, 307-327.

V. Kendon and B. Tregenn®ecoherence can be useful in quantum waldsys. Rev. A
67 (2003), 042315.

Yun Li, Lei Ma, and Jie ZhouGate imperfection in the quantum random-walk search
algorithm, Journal of Physics 89 (2006), 9309-93109.

Gui Lu Long, Yan Song Li, Wei Lin Zhang, and Chang Cun Deominant gate imperfec-
tion in grover’s quantum search algorithi@hys. Rev. A61 (2000), no. 4, 042305.

F. Magniez, M. Santha, and M. Szege@uantum algorithms for the triangle problem
SIAM Journal on Computing7 (2007), no. 2, 413-424.

305

F. L. Marquezino, R. Portugal, G. Abal, and R. Donangdlixing times in quantum
walks on the hypercub@®hysical Review A77 (2008), 042312.

C. Moore and A. RussellQuantum walks on the hypercylderoceedings of 6th Inter-
national Workshop on Randomization and Approximation Techniques (RANDOM
2002), Vol. 2483 of Lecture Notes in Computer Science (LNCS) (Cambridge, MA)
(J. D. P. Rolim and S. Vadhan, eds.), Springer-Verlag, Berlin, 2002, 2002, pp. 164—
178.

Michael A. Nielsen and Isaac L. Chuar@uantum computation and quantum informa-
tion, Cambridge University Press, October 2000.

A.C. Oliveira, R. Portugal, and R. Donangel@ecoherence in two-dimensional quantum
walks Phys. Rev. A74 (2006), 012312.

A. Romanelli, R. Siri, G. Abal, A. Auyuanet, and R. Donangdl®coherence in the
quantum walk on the lind>hysica A347 (2004), 137-152.

N. Shenvi, K. R. Brown, and K. B. Whale¥ffects of a random noisy oracle on search
algorithm complexityPhysical Review A8 (2003), 052313.

N. Shenvi, J. Kempe, and K. B. Whaléyguantum random walk search algorithRhys-
ical Review A67 (2003), 052307.

Mario SzegedyQuantum speed-up of markov chain based algorithResindations of
Computer Science, Annual IEEE Symposium(§2004), 32—-41.

A. Tulsi, Faster quantum walk algorithm for the two dimensional spatial searttys.
Rev. A78(2008), no. 1, 012310.

306

