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Abstract. In silico methods have been largely used in drug development process
to predict the toxicity of molecules. Predicting the toxicity is one of the most im-
portant stage in developing new pharmaceuticals and computational methods
are being used in order to make this process less time-consuming and decrease
its high cost. Here we report a new approach, using two-dimensional pharma-
cophore fingerprint to encode pharmacophoric features of molecules in string
sets, which are then processed by support vector machines (SVM) to predict
the toxicity endpoint of a carcinogenic data set with 1547 compounds. Previ-
ous studies have shown the use of machine learning approaches in predicting
the toxicity of molecules, however, in those cases it was required to calculate a
large number of molecular descriptors to be able to make such prediction. Using
SVM and only one molecular descriptor it was possible to achieve a satisfactory
accuracy rate compared to other machine learning approaches.

1. Introduction
Drug development is a high cost and time-consuming process which takes
about 12 years and US$800 million to bring a drug from discovery to market
[Schachter and Ramoni 2007, Suresh and Basu 2008]. This multi-step process investi-
gates the promising compounds, traditionally, using in vivo methods for their pharma-
cokinetic properties, metabolism and potential toxicity [Ekins 2003]. With currently
more than 80 000 chemicals in use it is truly necessary the use of computational meth-
ods to facilitate the access of this huge amount of data. The use of computers form
the core structure-based drug design which increases the chance of success in the de-
velopment process at a lower cost [Cronin 2001]. The potential toxicity of a com-
pound is investigated in the so-called preclinical stage of the drug development pro-
cess. Computational methods for predicting toxicity have been employed in the last
years and in silico techniques as knowledge-based expert systems and (quantitative)
structure-activity relationship (Q)SAR [Hansch et al. 1962] modelling approaches have
therefore helped to significantly identifying adverse drug reactions in preclinical stud-
ies [Muster et al. 2008, Kavlock et al. 2008, Egan et al. 2004]. The increase of compu-
tational methods is mainly due to the emergence of new chemical descriptors and new
algorithms and statistical perspectives in addition to the increase in the amount of avail-
able toxicity data [Benfenati 2007].

Here we report a SAR-based (structure-activity relationship) method for toxicity
prediction, which is an approach close to QSAR, but actually in these models the relation
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between a chemical property and the biological activity or effect is expressed in a qualita-
tive way without assigning a quantitative value to the toxicity. This approach can identify
molecular functionalities (features) that are known to cause toxicity [Kruhlak et al. 2007],
therefore the presence of these features means a potential toxicity in the compound. Thus,
success using in silico techniques would increase efficiency end effectiveness in deter-
mining the hazards of the many compounds that must be dealt with, so the need for more
sophisticated tools and models for toxicological prediction. In order to accomplish this, it
is indispensable an efficient mathematical algorithm and an appropriate way of describing
the chemical structure [Rabinowitz et al. 2008].

Some commercially toxicity prediction programs are available including TOP-
KAT (toxicity-prediction by computer-assisted technology), DEREK (deductive esti-
mation of risk from existing knowledge), CSGenoTox, MetaDrug and HazardExpert
[Ekins 2007]. These programs have a common characteristic, they are classified as
”global” models [White et al. 2003] since they were developed using a non-congeneric
set of chemicals. Actually it is not necessary for the chemicals in these data sets to be
congeneric, but they should share structural features. Besides the commercially avail-
able programs, another studies concern predictive toxicology have been published using
machine learning approaches [Tiwari et al. 2006, Kazius et al. 2005, Amini et al. 2007,
Neagu et al. 2005, Dearden 2003].

In this paper, a rapid method for predict carcinogenic compounds that utilizes sup-
port vector machines (SVMs) is presented. Although a number of applications of SVM
to computational chemistry have been published [Zhao et al. 2006, Jiang et al. 2006,
Yap et al. 2006] and similar toxicological prediction studies have been reported as well,
there is plenty of room for improvement. The ability of the predicting models is de-
termined primarily by the choice of descriptors that represent the compounds. Thus,
we present a simplified method using only 2D pharmacophore fingerprints descriptors to
represent compounds and to predict their toxicity endpoint. We have applied the SVM
to predict the toxicity of compounds using the carcinogenic potency database (DSSTox
CPDBAS Database). The method described here has utility in preclinical stage of drug
development.

The rest of the paper is structured as follows. In section 2, we briefly describe
molecule pharmacophoric properties and introduce the SVM classifier. We present the
method to predict the carcinogenic toxicity in section 3. Numerical test results and dis-
cussions can be found in section 4 before de conclusion in section 5.

2. Background
2.1. Two-dimension Pharmacophores
A pharmacophore is a set of structural features in a molecule which represents the in-
teractions between small molecule ligands and a protein receptor, and therefore, is re-
sponsible for that molecule’s biological activity [McGregor and Muskal 1999]. The hy-
drogen bonding, charge-charge and hydrophobic interactions are typical in molecules.
Thus, the identification of these pharmacophore features requires a chemical structure
analysis to determine the presence of some structures, such as: hydrophobicity, aro-
maticity, a hydrogen bond acceptor/donor and whether cationic or anionic. In order to
use this structures in computational models pharmacophore fingerprints were proposed
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[Bonachera et al. 2006]. These are pharmacophore models that represent each structure
as a point and the relation between these structures as a point pair. In the simplest
case, is the three-dimensional Euclidean distance between each point pair or in the two-
dimensional case topological relations are used to represent the relative position of phar-
macophore points [McGregor and Muskal 1999]. In a 2D atom-based pharmacophore fin-
gerprint representation [Varin et al. 2008], the pharmacophoric point pairs are calculated
and each pattern of the fingerprint corresponds to the shortest path between the nodes
(atoms-features) of the chemical graph, and the pharmacophore properties of molecules
are encoded as frequency counts of these point pairs1.

2.2. Support Vector Machines

The support vector machines (SVM) is a binary classification technique developed by
Vapnik [Vapnik and Cortes 1995]. SVM has become very popular because of its ex-
cellent generalization capacity. The main advantage of SVM is the structure risk min-
imization (SRM) principle, which has been shown to be superior to the traditional em-
pirical risk minimization (ERM) principle, employed by conventional neural networks
[Zhao et al. 2006, Jiang et al. 2006]. SVM algorithm attempts to establish a boundary
using support vectors (examples in the training) and ignores those examples that are out-
side the boundary which differs from the neural nets which seek to minimize the errors
over the entire training set [Jiang et al. 2006]. SVM has been developed and applied to
classification problems, regression problems and time-series estimation [Yap et al. 2006].
Given the training data {(xi, yi)|yi = 1 or −1, i = 1, ..., N} for a two-class classification,
whereN is the number of examples; xi is the input vector and yi is the class. The decision
surface is created by SVM with:

f(x) = sign
( N∑

i=1

αiyiK(xi, x) + b
)
, (1)

where K is the kernel function that define the feature space, b is the bias value, αi gives
the maximum margin hyperplane by the interval [0 ≤ αi ≤ C] where C controls the
values between maximizing the margin and minimizing the training error. The kernel
function can be linear, polynomial or Gaussian.

3. Method
In this paper we used a data set from the Distributed Structure-Searchable Tox-
icity (DSSTox) Public Database Network [Richard and Williams 2002] from the
U.S.Environmental Protection Agency 2. The DSSTox database project is targeted to
toxicology study areas, with standardized chemical structure annotation.

CPDB: The Carcinogenic Potency Database (CPDB) contains detailed results and
analyses of 6540 chronic, long term carcinogenesis bioassays [Gold et al. 2001], which
currently contains 1547 compounds. For the purpose of this study the carcinogenicity
endpoint was evaluated concerning hamster, mouse and rat species. The experimental
results about the remaining species (cynomolgus, dog, rhesus) are insufficient, therefore,
they were discarded. In the CPD database when the same compound was tested in more

1www.chemaxon.com
2http://www.epa.gov/ncct/dsstox/index.html, accessed Dez 2008
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than one specie, the experiment results for all these species were stored in a single entry.
Thus, for this study, the database was preprocessed in order to split a single entry as
many as necessary, accordingly to the number of species. We also discarded the entries
with inconclusive results, which actually represented only six examples. We have then
2272 total entries, divided in two classes - active with 1059 examples and inactive with
1213 examples. The structures of chemicals in DSSTox are stored as SDF files as well as
SMILES strings.

Molecular descriptors fall into some general categories [Ekins 2007,
Todeschini et al. 2000] and, for the purpose of this study, we have chosen a topological-
based descriptor (pharmacophore fingerprint). The pharmacophore fingerprint molecular
descriptor, for all molecules, were calculated using the GenerateMD software 3.

For each entry (compound) in CPDB data set two additional attributes were gener-
ated, for instance, for the molecule in Figure 1 we have the following informations (Table
1).

Figure 1. Molecule Structure

Table 1. Molecular Descriptors

Molecular Descriptor Value

PMAP d;r;r;r;r;r;a/r;d/r;r;r;r;r;r;r;
PF d a = 0 2 0 0 0 0 0 0 0 0 , d d = 0 0 0 1 0 0 0 0 0 0 ,

r a = 2 3 3 2 2 0 0 0 0 0 , r d = 3 6 6 4 2 2 2 0 0 0 ,
r r = 15 21 19 13 7 3 0 0 0 0

PMAP stands for Pharmacophore Mapping, all molecule’s pharmacophoric fea-
tures present in the molecule were calculated, identified and stored in this attribute, Table
2 describes all possible pharmacophoric informations. PF stands for Pharmacophore Fin-
gerprint, i.e., the frequency and the path length of the pharmacophoric features point pairs,
which were all encoded in this strings set. As the pharmacophore fingerprint is an atom-
based descriptor, thus each entry, in the strings, was assigned to an attribute. We have so
232 attributes, i.e, all point pairs combinations multiplied by the number of the maximum
frequency (10), plus the toxicity information attribute (ActivityOutcome). Based on the
toxicity information (active/inactive) available in the CPDB data set and on these phar-
macophoric data we can then construct a new data set format with the required examples
to be processed by the SVM algorithm.

3http://www.chemaxon.com, accessed Nov 2008
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Table 2. Pharmacophoric Features

Symbol Description

- anionic
+ cationic
a hydrogen bond acceptor
d hydrogen bond donor
h hydrophobic
r aromatic

For the classification process the data set of 2272 molecules was randomly divided
into ten folds with 227-228 molecules in each fold. One fold was used as a testing set, and
the nine others folds were for training. Calculations were repeated ten times for a 10-fold
cross validation.

4. Results and Discussion

The data set was trained using Gaussian Kernel with a C (trade-off between training error
and margin) ranging from 1 to 100.

K(x, z) = esp
(
− ‖x− z‖

2

2σ2

)
, (2)

we had then two parameters to be specified, σ and C. The selection was made by training
for different values of these parameters to identify those which minimized an upper bound
on the expected generalization error. If C has a low value then insufficient emphasis will
be placed on fitting the training data. On the other hand, if C has a great value it might
overfit the training data. In spite of this to make the learning process stable a great value
should be used initially. The optimal value of C was 90.

The speed of training, number of support vectors, training and test accuracy,
precision and recall were analysed. In spite of the fact that all informations were
observed, due to space limit we reported only the best results. The details of pre-
dicted values are given in Table 3. According to Table3, the recall presented a large
value, which means that a great number of positives (active examples) have been pre-
dicted correctly. It is important to mention that these results are better than those ob-
tained by Chemical Descriptors methods, which use various chemical descriptors such as
LOGP, LUMO and dipole moments to model toxicity of compounds [Enslein et al. 1994].
Other studies about toxicity prediction have been reported in the recent last years
[Cronin 2001, Amini et al. 2007, Dearden 2003, White et al. 2003, Jiang et al. 2006] and
their results are very closed to ours. However, in most of the cases it is necessary to cal-
culate a large number of molecular descriptors for the properly toxicity prediction. In this
case, only one molecular descriptor is sufficient, which is present in all molecules what-
ever the toxicity endpoint is. That means no matter what toxicity data set is being used it
is possible to calculate the pharmacophore fingerprint to predict the toxicity activity.
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Table 3. Prediction of Active and Inactive Toxicity Classes

TP 1 FN2 TN3 FP 4 Recall5 Precision6 Accuracy7

803 256 986 227 75.82% 77.96% 78.70%

1True Positives. 2False Negatives. 3True Negative. 4False Positive. 5TP/(TP +
FN). 6TP/(TP + FP). 7(TP + TN)/(TP + TN + FP + FN).

After knowing the results an attribute selection procedure was applied in order
to identify those input attributes that were most relevant to toxicity prediction.A ranker
method listed all 231 attributes from the most relevant to the less relevant. Table 4 lists
the top four features (attributes) and the Figure 2 illustrates the molecules which shows
pharmacophoric features represented in these attributes.

Table 4. Ranked Attributes
Attribute Path (between point pairs)

a + 1
r h 7
r r 2
r r 7

Figure 2. Graphical Representation of Pharmacophoric Features

5. Conclusion
Developing predictive classifiers for biological data sets is a great challenge. Although
many works have been done there is room for improvements. We have proposed a new
method for toxicity prediction based only on the two-dimensional pharmacophore fea-
tures. There is no need to calculate many molecular descriptors and deal with other struc-
ture descriptions like atom bonds either. It seems obviously that this method must be
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improved in order to achieve higher accuracy rates. However, we can do a more detailed
feature selection to identify and select those features which are more relevant for the toxi-
city prediction in a molecule concern these pharmacophoric informations. During the last
years a huge number of new molecular descriptors have been calculated to help predict-
ing toxicity of candidate drugs. These new molecular descriptors in fact have helped in
this complex process, on the other hand, they have increased the time processing and also
increased the biological database’s size. Maybe it would be better to investigate further
the already known descriptors in order to find out new ways to represent and manipulate
them.
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