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Abstract. Deep Packet Inspection (DPI) systems have been increasingly 
performed on dedicated hardware, as an attempt to speed up the packet 
processing for high speed links. This is mainly caused by the current demand 
for CPU-intensive processing required by regular expression functions, which 
investigate the packet payload trying to match patterns of application 
signatures. This study proposes and evaluates techniques to optimize DPI 
systems using commodity hardware. At first, it is designed a new optimized 
software architecture. In the following, this architecture is implemented 
into a DPI software and those optimization techniques are then integrated. 
Our results show that the time spent with regular expression matching was 
actually improved, besides the packet loss rate when realizing online 
measurements meanwhile. The evaluation results state that the 
performance of a typical DPI process on a Linux box can be improved in 
almost 100%, and the amount of classified traffic may be increased 220%. 

1. Introduction 
Internet Service Providers (ISP) and network administrators always had deep interest in 
knowing what type of traffic is traversing their network backbones. Therefore, they 
need to perform continuously network monitoring and traffic analysis. Such tasks are 
very important to provide overall information about the network status, such as network 
problems, protocols and applications that are being used and other information about 
the network infrastructure. Additionally, this monitoring must be very precise, since 
erroneous assumptions about the network can lead to undesirable operating cost. 

 In order to have updated knowledge about network traffic profile, ISPs and 
network administrators are commonly relying on Online Traffic Classification (OTC). 
OTC is a great aid to traffic management, since the ISPs can take management decisions 
in real time, according to the traffic that is traversing the backbone. For example, they 
can decrease or increase the Quality of Service (QoS) of some applications or even 
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block anomalous flows. In the past, OTC was exclusively relying on the well-known 
port-based application identification approach, where Internet applications had well-
known port numbers to send and receive their packets. However, with the behavior 
dynamics of the Internet, mainly caused by peer-to-peer (P2P) applications 
[Karagiannis et al. 2004], this type of classification is not accurate anymore. 
Morevover, classification based on the well-known ports is not efficient to detect 
malicious flows and attacks over the Internet either. 

 Nowadays, due to the dynamic behavior of the Internet, OTC is relying on Deep 
Packet Inspection (DPI), which is the monitoring approach that provides the most 
detailed information about the packets that are traversing the network. DPI systems 
capture packets and perform some kind of matching between the packet payload and an 
application signature, commonly represented by Regular Expressions (RegEx). DPI 
systems are considered one of the most precise and maintainable packet analysis 
techniques, since RegExes can fully describe various protocol messages and can be 
modified or added to the system in a quite simple fashion, in order to fix a broken 
pattern, or recognize new applications. 

 On the other hand, the RegEx matching process performed by DPI systems is 
the most expensive task on such applications, consuming over 90% of the processing 
time when considering the processing of the system as a whole [Yu et al. 2006]. This 
high processing time forces, in counterpart, DPI systems to use specialized hardware 
and software solutions, striving to obtain good performance on high speed links. In 
general, hardware and software solutions to support DPI are expensive, since those 
solutions use dedicated high-end technology components to speedup performance and 
effectiveness as much as possible. Consequently, those systems are not financially 
reasonable to medium or small Internet Service Providers (ISP). 

 Deploying DPI systems capable to deal with high speed links in commodity 
hardware and software is still an open challenge, either for the industry or the academic 
community. Such challenges are mainly caused by the huge and rapid growth of the 
network link speeds. It is difficult to deploy DPI systems, performing OTC without 
packet loss, while maintaining an acceptable classification completeness.  

 This paper addresses the previous issues by proposing some architectural and 
software layer modifications that lead to considerable performance gains, using 
commodity hardware and software. With those gains, a system that was not able to deal 
even with 100Mbit/s without discarding packets in the path through the network 
interface, passing by the kernel space to the user space level, is now able to attend a 
throughput of 900Mbit/s with nearly 0%of packet loss, and surprisingly increasing the 
classification completeness. In order to verify the augmented performance, a traditional 
DPI system that runs on a commodity platform, i.e., Linux OS and Intel architecture 
was taken as a baseline. 

 The DPI system used as baseline has some basic features, namely sequential 
processing, libpcap1 library for packet capture and a set of rules or signatures. Some 
optimizations are proposed and evaluated within this DPI system at several levels, in 
order to obtain the best performance trade-off without specialized hardware solutions. 
The contribution of this paper is many-fold: first an architectural level optimization is 
                                                 
1 www.tcpdump.org 
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proposed to take advantage of all available resources of the operating system. Second, a 
slight modification on how packets are forwarded, at kernel level to user space is 
implemented. Third, this paper applies and evaluates two other techniques, presented at 
[Fernandes et al. 2008], that lead to a considerable improvement to this DPI system, 
namely packet counting (PC) and payload truncating (PT). Finally this paper also shows 
how subtle modifications on some RegEx (Regular Expression) signatures can increase 
the processing speed, by reducing the size of the generated automaton, and decreasing 
the packet loss rate. 

 The remainder of this paper is organized as follows. Section 2 presents the 
essential background needed for the paper understanding. Section 3 presents proposed 
optimizations and the methodology that is followed by the evaluations. Then, Section 4 
shows the results obtained with the new architecture and proposed approaches. Section 
5 presents the related work. Finally, Section 6 discusses some observed points and 
Section 7 points out some concluding remarks and future works. 

2. Technical Background 

2.1. Regular Expressions 
Regular Expression (RegEx) is a set of strings, which represent a pattern used to match 
a certain string of characters. They provide an enormous expressiveness without 
necessity to express the complete desired pattern, so a RegEx can fully represent a 
complete protocol communication. They are also used in computer science. 

 When RegExes apply a formal description language checking the source code in 
a programming language and compiling it,  with a variety of writing patterns.  They are 
commonly represented as automata, which can be Deterministic Finite Automata 
(DFA), Non-Deterministic Finite Automata (NFA) and Extended Finite Automata 
(XFA). These automata can consume a great bunch of memory if with complex 
RegExes also, consuming a huge amount of time to report a successful match. Hence, 
one of the features that is directly correlated with the matching time is the number of 
greed operators used to represent one RegEx, e.g.* and +, used to match character 
chains,. For instance, if a pattern like r.*e is going to search for patterns in the string 
“regular expressions”, the reported match would be “regular expre” even if “re” 
would be sufficient. This additional searching time may not play a big difference in 
applications that do not require results in real time or that even requiring it, does not 
have a high income rate. However, when those kind of matching are performed in real 
time systems, or those that deal with high traffic rates, for instance, this additional time 
can be crucial. Therefore, RegExes must be carefully writtenin order to have acceptable 
searching times. 

2.2. Traffic Analyzer Module (TAM) 
The DPI system used as the baseline of this paper, namely Traffic Analyzer Module 
(TAM), uses a set of RegExes signatures. The signature database accomplishes more 
than 60 applications, falling into 9 different application classes. TAM was developed 
using the C language, using the libpcap library for packet capture, and the C library 
regex for RegEx matching. 
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 TAM is composed of four modules: 1) the capture module, which is responsible 
for capturing packets from an Ethernet device; 2) the aggregation module, which 
aggregates the packets in to flows and stores them in a hash table for further lookup; 3) 
the classification module, which compares the packet payload (only packets that 
belongs to unclassified flows) with the RegExes signatures, aiming to classify the 
network traffic flows, and 4) the cleanup module, which is responsible to go through 
every entry in the hash table and verify whether or not the flows have  expired removing 
the timed out ones. 

 TAM has two basic/main threads, which separate the flow packet analysis from 
the hash table cleanup. The cleanup module runs on a thread separate from the other 
three modules. This thread is activated on pre-defined time intervals, i.e., 5 minutes. It 
is important to remark that when it runs, it locks the hash table that is accessed and 
updated by the other three modules. Thus, the capture module has to stop dequeueing 
packets from the capture buffer, resulting in undesirable packet losses. 

 TAM was developed at the Networking and Telecommunication Research 
Group (GPRT)2, from the Federal University of Pernambuco (UFPE). The main 
objective of TAM is to capture all the packets that traverse the network in order to 
classify them on the fly. To achieve this goal, it aggregates the packets into flows with 
the lowest packet loss rate in case of online classification.  It was initially conceived to 
run in a 34Mbit/s backbone, at the Point of Presence of Pernambuco (PoP-PE) with a 
direct link to the Point of Presence of Rio de Janeiro (PoP-RJ), working with no loss of 
packets at such speed. 

 However, the requirements have changed. Those requirements have increased to 
accomplish higher speeds of network links, in this case of study reaching 1Gbit/s. At 
this speed, the TAM tool must capture, aggregate and classify packets maintaining as 
few as packet losses as possible without significant decrease in the classification 
completeness. Although it seems that the use of TAM as a baseline may limit the 
generality of our proposal, it is worth emphasizing that the architecture of TAM and its 
performance is much similar to other commodity platform-based DPI systems (e.g. 
Snort3). Therefore, most of the appointments and conclusions made throughout this 
paper can be extended to such similar DPI systems. 

3. Proposed Optimizations 

3.1. New Architecture 
In this paper, it is proposed and implemented a novel multi-threaded architecture to 
improve the performance of DPI systems. Each thread, which runs in parallel, will act 
as an independent packet inspection component, grouping up the functions of the first 
three modules described at Section 2, namely capture, aggregation and classification 
modules. Each worker thread has its own capture buffer and an ID number (starting 
from 0 for the first thread). These several packet buffers are filled up using the packet 
capture library PF_RING [Deri 2004]. This new architecture additionally has he 
cleanup module in a separated thread. 

                                                 
2 http://www.gprt.ufpe.br 
3 http://www.snort.org/ 
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 This new architecture presents problems related to operation synchronization. It 
has to deal with two different levels of synchronization: 1) each thread must be locked 
when the cleanup module starts running, and 2) since only one thread would be working 
at this time, the other need to wait until it finishes, in order to avoid the access to a flow 
that is being cleaned up from the hash table, for instance. 

 One manner to create one packet buffer per worker thread is to replicate in all 
buffers the packets received, oncethere is no entity responsible to distribute the 
incoming packets among the threads. In this sense, a mechanism to detect which packets 
are already being analyzed by another worker thread worth it to be implemented, 
consequently adding some overhead. Also, even applying such mechanism, if a buffer is 
locked by one thread that is analyzing the packets, it may overflow, and packets will be 
dropped. 

 Those problems could be eliminated if the threads were independent, without the 
necessity to share information among each other. This could be achieved if packets 
from the same flow were treated by the same thread, that is, if different threads were not 
analyzing packets of the same flow. Hence, no thread synchronization would be 
mandatory, since each thread would have its own set of flows, leading to a complete 
parallel execution. Moreover, each thread would have a private hash table, decreasing 
the time spent to search for a flow. 

 
Figure 3.1 – New Architecture 

 On this purpose, a Load Balancing Module (LBM) was integrated within the 
architecture. The LBM was implemented as a Linux kernel module. This module 
distributes the packet load among the worker threads in a way that different threads will 
not receive packets of the same flow, avoiding many synchronization problems. This 
module intercepts all packets that arrive at the NIC before their entrance on the capture 
buffers, assigning the packets to the thread buffer that they belong to. Since each thread 
has its own set of flows, there is no need to share the flow information between threads, 
therefore, it avoids synchronization costs. This new architecture is shown in Figure 3.1. 
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 The key point of the LBM is a simple and effective hashing function that is 
calculated whenever a packet arrives at the NIC. Such function is described in Equation 
1. With this simple hashing function, LBM can guarantee that a given flow, and its 
reverse, will be always forwarded to the same thread. 

threadID = (IPSrc + IPDst + layer4SrcPort + layer4DstPort + layer3Protocol) mod 
numberOfThreads 

Equation 1 – Hashing Function 

 As mentioned in Section 2.2, most commodity platform-based DPI systems, like 
TAM software, have unacceptable packet losses, because of the lock of the classifier 
thread at the flow cleanup moment. Since this novel proposal has a private hash table 
per thread, then it can obtain an important performance gain with a unique cleanup 
module, which is depicted at Figure 3.2. In this example, the cleanup process is 
activated every 5 minutes. The cleanup module will only update one hash table a time, 
thus, the system still has N-1 threads working in parallel. Therefore, the entire system 
would not be locked out, increasing the packet capture rate. 

 
Figure 3.2 – Unique Cleanup Module 

 RegEx matching performance is directly dependant on the size of the generated 
automaton that represents the expression. Thus, if a RegEx is full of wildcards (*), the 
associated automaton size can become enormous, dramatically decreasing the RegEx 
matching time. In order to reduce such latency, some RegEx signatures are going to be 
rewritten, reducing the size of the generated automaton without loss of precision. 

 The final optimizations to be incorporated at this architecture were proposed by 
Fernandes et al. [Fernandes et al. 2008], namely PC and PT. It is then expected a 
reduction in the packet loss rate when the DPI system is handling with high throughputs 
by analyzing: (i) only the first 7 packets of a given flow; and (ii) the first 750 of the 
packet payload. Those thresholds were set for PC and PT based on the results of the 
study presented in [Fernandes et al. 2008]. Afterwards, PC and PT techniques are going 
to be part of the rewritten patterns of the new architecture. 
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3.2. Methodology 
In order to evaluate the packet capture rate when the system is submitted to different 
traffic generation loads, an experimental testbed was built, according to what is 
described in Figure 3.3. The testbed comprises four machines and one switch, each one 
playing the following roles: 1) a measurement machine (M) that will receive the 
generated traffic; 2) three traffic generators machines (S1, S2 and S3), also called slave 
machines, which replay a previously captured packet trace and send it through the 
machine NIC, using tcpreplay4; and 3) a 1Gbps switch, which in charge of aggregating 
all traffic and forward it to the measurement machine. The full machines’ configuration 
of the built testbed, used for all tests, is described at Table 3.1. 

Table 3.1 – Testbed Configuration 

Machine Processor 
RAM 

Memory 
Administrative NIC 

Traffic Generator/Receiver 

NIC 
HD 

Operating 

System 

M 
Intel Xeon X3210 

Quad-core 
4GB DDR Onboard Gigabit Offboard, 3Com Gigabit 

3x 500GB 

Sata HDs 
Linux, 2.6 

S1 
Intel Xeon 5110 

Dual-core 
2GB DDR Onboard Gigabit Offboard, 3Com Gigabit 

1x 250GB 

Sata HD 
Linux, 2.6 

S2 
AMD Athlon 64x2 

Dual-core 
1GB DDR Offboard 10/100Mbit Onboard, nVidia Gigabit 

1x 300GB 

Sata HD 
Linux, 2.6 

S3 
AMD Athlon 64x2 

Dual-core 
1GB DDR Onboard Gigabit Offboard , Intel Gigabit 

1x 300GB 

Sata HD 
Linux, 2.6 

 It is worth remarking that all experiments were performed using real packet-
level traces collected at one of the largest commercial ISP in Brazil. The passive probe 
used to collect the traffic was listening to a router port that was mirrored, in order to 
avoid interference in the regular traffic transit, which consists of traffic from/to around 
50.000 ADSL subscribers. To make the collected data more representative in terms of 
traffic diversity, the network was sniffed for several days, accumulating almost 6TB of 
real Internet traffic in different periods of the day. A representative sample of this 
collection was selected to be replayed to the measurement machine at these 
experiments. 

 The following metrics are considered in the experiments: 

1. Packet Loss Rate 

Loss of packets is one of major concerns when applying DPI at the wire rate, especially 
when using commodity hardware. It also impacts the classification completeness. The 
rate of the traffic generated by the slave machines was varied, in order to evaluate how 
much traffic each DPI version can handle. The starting point was 100Mbit/s, after that 
the rate was increased by a factor of 100, up to 900Mbit/s. 

2. Classification Completeness 

Classification completeness is the percentage of volume or flows that is classified by 
the system. It is important to develop a DPI system that has no packet loss, besides 
providing a good level of with completeness.  

                                                 
4 http://tcpreplay.synfin.net/trac/ 
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Figure 3.3 – Testbed Architecture 

4. Evaluation and Results 
At first, it is shown in Figure 4.1 (a) how the DPI baseline system performs on the 
lowest packet incoming rate (100Mbit/s). Each point of the line corresponds to the 
percentage of the packets that were lost after received at the NIC in the period of one 
second. Additionally, Figure 4.1 (b) contains the results obtained when the novel 
architecture proposed in this work is evaluated at the same rate, 100Mbit/s. As shown in 
the figure, even with a lower packet incoming rate, the original DPI system has severe 
losses of packets, reaching on average almost 60%. It is also important to remark that at 
time that the cleanup thread is triggered, i.e. in intervals of 5 minutes, the system loses 
100% of the packets received.  

 
Figure 4.1 – Packet Loss, Original DPI (a) vs. New Architecture (b) (100Mbit/s) 

 The New Architecture has a new packet capture mechanism, switching from the 
libpcap to a fine-tuned PF_RING. From now on, the shared circular buffer between 
kernel and user space will avoid unnecessary packet copies between them, therefore it 
will increase the system throughput. 
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 Figure 4.1 (b) shows that, at 100Mbps the New Architecture outperforms the 
original one and has some losses at the beginning of the measurement. The mains 
reason for this behavior is that when the DPI is initiated, almost every packet that 
arrives could represent a new flow. Therefore, the DPI will try to classify almost every 
packet, which can lead to such loss peaks. However, as long as those flows are 
classified by the DPI, the arrival rate of new flows starts reducing and it has minimal 
packets losses. 

 Figure 4.2 shows that the New Architecture dramatically improves the packet 
capture rate up to 300Mbit/s. However, with incoming rates greater than 300Mbit/s, the 
new DPI .still faces severe losses. 

 
Figure 4.2 – Packet Loss, original DPI vs. New Architecture 

  One of the key proposed optimization technique was the new multithread 
architecture, which distributes the capture and analysis tasks among several threads. 
Please note that only deploying this multithread feature would not be enough to 
minimize losses, without the help of LBM. By providing a load balancing component, 
the new DPI can eliminate synchronization problems, by making sure that there will 
exist a N:1 relation between flows and threads. In other words, the worker threads will 
effectively work in parallel. Additionally, the single cleanup module can ensure that, 
even when it starts its operation, there will be, at least, N-1 threads working. 

4.1. Packet Counting (PC) and Payload Truncating (PT) 
By inspecting only the first 7 packets of a given flow (PC feature), we expect that 
packet losses will be minimized even at a incoming rate beyond 300Mbps. Although, it 
has an impact on the DPI accuracy, such approach provides good completeness levels 
[Fernandes et al. 2008]. Then, another improvement in the new DPI was integrated, 
namely the use of the PT technique, which takes into account only the first 750 bytes of 
the packet’s payload. The performance evaluation results are presented at Figure 4.3. 

 The results show that the packet loss rate can be dramatically reduced when the 
RegEx matching is limited to the inspection of the first 7 packets of a given flow. At 
900Mbps, the New Architecture presented only 38.58% of packet loss rate, against 
96.57% of the original DPI. 
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Figure 4.3 – Packet Loss: original DPI vs. New Architecture with PC and PT 

 The packet loss rate had a considerable reduction when PT technique was 
applied, and the results obtained with the PC technique are remarkably better. Both of 
these improvements do not present packet losses until an income rate of 200Mbps, 
against 56.94% and 79.11% for the original DPI system, in a rate of 100Mbps and 
200Mbps respectively. The dropped packets at the highest rate income rate, 900Mbit/s, 
have suffered a slightly reduction for the original DPI technique from 96.57% to 
84.72%.  

 
Figure 4.4 – Classification Completeness 

 The original DPI system analyzes all packets from a given flow, although the 
classification completeness is approximately 25% in terms of byte volume, as shown in 
Figure 4.4. . Such a high level of unclassified traffic is justified because of its high 
packet loss rate, which is 96.57% at 900Mbit/s. Those dropped packets carry the 
signatures of applications in their payload that are recognized by TAM. The release that 
analyses only the first 7 packets could classify around 77% of the volume share On the 
other hand, this release captures packets from more flows with a better regularity, 
besides, there is also a high probability of the signature be located at the first packets 
too. The same behavior on the classification completeness occurs for the PT technique. 
The amount of volume that was classified when inspecting only the first 750 bytes of 
the packet payload is approximately 57%, which is greater than twice as much as the 
classification completeness of the original DPI. In the cases that PC and PT techniques 
were used, a smaller amount of data being analyzed contributed to better classification 
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completeness when the packet income rate was greater than the rate that the system can 
actually deal with. 

Table 4.1 – Analyzed traffic statistics (700 Mbit/s) 

Version Number of Captured Flows Captured Volume (GB) 

Analyzing all packets 3,222,939 6.56 

Analyzing first 7 packets 13,149,126 136.86 

 The Table 4.1 summarizes a comparison of two TAM releases in terms of the 
number of flows and the amount of volume (GB) that could be actually captured at 
700Mbit/s speed. The releases are the one that represents the original DPI system and 
the other implements the PC optimization. It shows how  the number of flows and the 
byte volume captured by the New Architecture, analyzing only the first 7 packets, is 
much greater than what is captured by the original DPI system. In terms of flows, it is 4 
times greater and about 21 times as much as volume. 

4.2. Evaluation with Rewritten Patterns 
The main bottleneck of a common DPI is the RegEx matching operation. In order to 
improve performance some patterns were rewritten, mostly related to use of 
unnecessary greedy quantifiers like * and +. Such modification on those patterns have 
reduced its generated automata size and consequently reduced its searching time. 

 
Figure 4.5 – HTTP RegEx 

 For instance, a common pattern that recognizes the HTTP protocol is described 
at Figure 4.5. This pattern has a greedy quantifier at its end, which denotes zero or more 
repetitions of any characters in the range specified inside the brackets (3rd Block). This 
quantifier is completely unnecessary, since that a payload to successfully match this 
RegEx only needs to have the first two blocks of the expression, making no difference 
whether there are more characters or not after these blocks. This indifference is caused 
by the quantifier *, denoting zero or more repetitions. Thus, removing the final block of 
this expression can lead to a considerable gain in the matching speed, since the greedy 
quantifier will not be present and spending unnecessary time, looking for more 
characters. Therefore, the 3rd block of this RegEx was removed, resulting in a new 
pattern.  Several RegExes for a number of protocols were revised, although we do not 
show here due to lack of space. 

 Figure 4.6 shows that the packet loss rate was reduced from 56.94% to 0%, in 
100Mbit/s, and from 96.57% to 90.32%, in 900Mbit/s. As expected, the classification 
completeness increased since more packets were captured at the user space.  Figure 4.7 
shows that the classified volume has increased from 25%, in the original DPI, to 
51.78%, in the new architecture with rewritten patterns. 

 

2155



 
Figure 4.6 – Packet Loss, original DPI vs. New Architecture (Rewritten RegEx) 

 
Figure 4.7 – Classification Completeness, Rewritten Patterns (Bytes) 

4.2.1. All Techniques Together 
In order to obtain the highest packet capture rate, the techniques mentioned on this 
paper were combined with the New Architecture, leading to a high performance DPI. 

 Figure 4.8 shows the loss rate of the new DPI with all techniques combined. It 
starts to drop packets only at 800Mbit/s. At 900Mbit/s the loss rate is around 0.15%. 

 
Figure 4.8 – Packet Loss, Original DPI vs. New Architecture (all techniques) 
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 Additionally, the classification completeness reached the greatest classified 
volume. The Figure 4.9 shows that the classified byte volume has increased from 25%, 
with original DPI, to almost 80%, with the New Architecture and mixed techniques, 
thus representing a gain of 220%. 

 
Figure 4.9 – Classification Completeness, Mixed Techniques (Bytes) 

5. Related Work 
There are several works in the scientific community that bring up a great contribution to 
the achievement of higher DPI performance and accuracy for traffic analysis and 
classification.  Deri [Deri 2004] proposes a new type of kernel socket, called PF_RING, 
which is able to improve drastically the packet capture rate on Linux-based systems. 
Using PF_RING sockets, one packet does not have to go through the entire delivery 
protocol stack from the NIC to the user application, but it takes a straight path from 
kernel to user space. This new socket is based on a circular buffer, which is shared 
between kernel and user spaces, and handles incoming packets. His technique has 
outperformed other known packet capture approaches. He also extended his previous 
work with PF_RING and proposed nCap [Deri 2005]. It is seen as a further 
improvement to the packet capture rate in Linux-based systems. The author created a 
solution for packet capture and transmission at wire speed. His evaluation showed that 
the proposed approach has better performance than PF_RING. However, as nCap is at 
the driver layer, it is bound to a specific kind of NIC, the Intel GE 32-bit. 

  Bernaille et al. [Bernaille et al. 2006] have studied TCP flow classification  with 
low CPU power consumption. His approach consisted of analyzing the size of the first 
five packets of a TCP flow, achieving a high packet capture rate since RegEx matching 
is not performed. Although, that approach has several drawbacks including: 1) it does 
not perform well for short flows (with less than five packets); 2) it needs to track the 
reverse flow, and sometimes the reverse flow does not follow the same path, thus, it is 
not suitable for measurements at ISP routers, for instance; 3) the packet size is not a 
precise classification criterion as different applications can have the same packet size 
distribution; and 4) it is not applicable to UDP flows. 

 Sen et al. in [Sen et al. 2004] have done a study on peer-to-peer (P2P) 
application classification, using signature matching and performing analysis on five 
widely known P2P protocols. They used fixed string signatures of those protocols, 
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aiming to evaluate the accuracy of those signatures. They were able to show that the 
packet examination is only needed on the first packets of a given flow, i.e. less than 10 
packets, which led to less than 5% of false positive results in some protocols. 

 Yu et al. [Yu et al. 2006] proposed a fast and memory-efficient solution to 
RegEx matching. They have analyzed the computational and storage cost of building 
individual DFAs for matching RegEx. Thus, based on such analysis, they proposed two 
rewriting rules that can dramatically reduce the size of the resulting DFAs, reaching 
99% of reduction. Following, techniques to combine multiple DFAs into a small 
number of groups were developed, improving the matching speed. 

 In [Kumar et al. 2006], the authors introduced a new representation for RegEx, 
called Delayed Input DFA (D2FA). This modification in the original DFA substantially 
reduces its space requirements. The authors explored the outgoing transitions shared by 
sets of states and introduced a special kind of transitions called default transitions. It 
showed that even reducing the number of edges of a given automaton, the same set of 
patterns could be recognized. That approach reduced the number of edges by more than 
95%. 

 The authors Fernandes et al. [Fernandes et al. 2008] have proposed techniques to 
obtain considerable performance gains in DPI systems. Their techniques consisted in 
analyzying only the first packets of a given flow and truncating the packet payload. 
They reported that if analyzing only the first 7 packets, it would be sufficient to 
successfully classify a flow, hence, reducing the processing time in almost 80%. 
Additionally, they have shown that analyzing only first 750 bytes of the packet payload 
can lead to a  performance and accuracy trade-off. 

 In [Smith et al. 2008], the authors show a solution that addresses the known 
problem of state explosion related to automata, which are commonly used to represent 
RegExes. They propose techniques aiming to combine XFAs, eliminate ambiguity and 
optimize the memory usage and performance of those automata. They performed tests 
on Snort and on Cisco Systems, in order to validate their techniques achieving 
impressive results. 

 The authors in [Po-Ching Lin et al.] present the importance of string matching 
for traffic identification and analysis, also citing some approaches on string matching 
algorithms development. They cite the Automaton-based (using DFAs and NFAs), 
Heuristic-based (that can make shifts while searching for a string in a payload, in order 
to avoid unnecessary comparisons) and the Filtering-based approaches (that makes a 
pre-filtering of the payload, to exclude patterns that definitely do not match). They 
discussed the pros and cons of those techniques. 

6. Discussion 
In the previous sections, some optimizations were discussed, deployed and evaluated. 
One of the key points was to confirm that problem solving always starts with a carefully 
architecture and design planning. Those points were reflected on the combination of the 
multi-threaded approach and LBM. Hence, without those preliminary optimizations, 
none of the presented gains would be possible to achieve in the original DPI. 

 However, PC and PT optimizations have to be carefully used. For instance, PT 
technique can change the traffic profile of the analyzed network. Chances are that 

2158



signatures may perform a successful match, even against the correct one that would 
match at the truncated payload block. Additionally, if PC is performed with a small 
threshold for the number of packets, a significant amount of traffic can become 
unclassified, since some application protocols do not write their signatures in the first 
packets of a flow. 

7. Concluding Remarks 
This paper has shown how system developers can fine-tune DPI systems, by 
implementing careful modifications that will lead to considerable performance gains. 
By doing so, a DPI system that is not able to cope with high packet incoming rates (e.g. 
at 1Gbit/s) can handle such traffic load with no decrease in classification completeness. 

 Those mentioned performance gains are summarized in the steps made in each 
optimization phase, thus resulting in a gain of almost 100%, reducing from 96.57% of 
packet losses, in the Original DPI at 1Gbit/s, to 0.15%, in the New Architecture with all 
optimizations combined. Additionally, this paper has shown how DPI systems can take 
a great advantage when analyzing the first packets of a given flow, and truncated 
payload, with considerable gain in classification completeness, around 220%.  

 In Section 4.2, the results have shown that RegEx rewriting is a valuable 
technique that can lead to considerable performance, without a huge effort. However, 
only few RegExes were rewritten, those that presented the most critical problems, in a 
groupof about 40 RegExes. Due to this reason, we can envisage as a future work the 
evaluation of other RegExes, the identification and revision of challenging signatures 
can lead to additional improvements. Additionally, there are other RegEx libraries that 
can be evaluated and compared with the one used in the original DPI. 
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