
Performance-driven Development of Deep Packet
Inspection Systems on Commodity Platforms

Thiago Lacerda1, Stênio Fernandes1,2,3, Ana Cristina Oliveira1, Djamel Sadok1,
Judith Kelner1

1Grupo de Pesquisa em Redes e Telecomunicações (GPRT) – Centro de Informática
(CIn) – Universidade Federal de Pernambuco (UFPE)

Caixa Postal 7851 – 50.732-970 – Recife – PE – Brazil.

2Instituto Federal de Educação Ciência e Tecnologia de Alagoas (IF-AL), Maceió,
Brazil

3School of Information Technology and Engineering (SITE) – University of Ottawa
Ottawa – Canada.

{thiagobl, stenio, ana, jamel, jk}@gprt.ufpe.br

Abstract. Deep Packet Inspection (DPI) systems have been increasingly
performed on dedicated hardware, as an attempt to speed up the packet
processing for high speed links. This is mainly caused by the current demand
for CPU-intensive processing required by regular expression functions, which
investigate the packet payload trying to match patterns of application
signatures. This study proposes and evaluates techniques to optimize DPI
systems using commodity hardware. At first, it is designed a new optimized
software architecture. In the following, this architecture is implemented
into a DPI software and those optimization techniques are then integrated.
Our results show that the time spent with regular expression matching was
actually improved, besides the packet loss rate when realizing online
measurements meanwhile. The evaluation results state that the
performance of a typical DPI process on a Linux box can be improved in
almost 100%, and the amount of classified traffic may be increased 220%.

1. Introduction
Internet Service Providers (ISP) and network administrators always had deep interest in
knowing what type of traffic is traversing their network backbones. Therefore, they
need to perform continuously network monitoring and traffic analysis. Such tasks are
very important to provide overall information about the network status, such as network
problems, protocols and applications that are being used and other information about
the network infrastructure. Additionally, this monitoring must be very precise, since
erroneous assumptions about the network can lead to undesirable operating cost.

 In order to have updated knowledge about network traffic profile, ISPs and
network administrators are commonly relying on Online Traffic Classification (OTC).
OTC is a great aid to traffic management, since the ISPs can take management decisions
in real time, according to the traffic that is traversing the backbone. For example, they
can decrease or increase the Quality of Service (QoS) of some applications or even

2145

block anomalous flows. In the past, OTC was exclusively relying on the well-known
port-based application identification approach, where Internet applications had well-
known port numbers to send and receive their packets. However, with the behavior
dynamics of the Internet, mainly caused by peer-to-peer (P2P) applications
[Karagiannis et al. 2004], this type of classification is not accurate anymore.
Morevover, classification based on the well-known ports is not efficient to detect
malicious flows and attacks over the Internet either.

 Nowadays, due to the dynamic behavior of the Internet, OTC is relying on Deep
Packet Inspection (DPI), which is the monitoring approach that provides the most
detailed information about the packets that are traversing the network. DPI systems
capture packets and perform some kind of matching between the packet payload and an
application signature, commonly represented by Regular Expressions (RegEx). DPI
systems are considered one of the most precise and maintainable packet analysis
techniques, since RegExes can fully describe various protocol messages and can be
modified or added to the system in a quite simple fashion, in order to fix a broken
pattern, or recognize new applications.

 On the other hand, the RegEx matching process performed by DPI systems is
the most expensive task on such applications, consuming over 90% of the processing
time when considering the processing of the system as a whole [Yu et al. 2006]. This
high processing time forces, in counterpart, DPI systems to use specialized hardware
and software solutions, striving to obtain good performance on high speed links. In
general, hardware and software solutions to support DPI are expensive, since those
solutions use dedicated high-end technology components to speedup performance and
effectiveness as much as possible. Consequently, those systems are not financially
reasonable to medium or small Internet Service Providers (ISP).

 Deploying DPI systems capable to deal with high speed links in commodity
hardware and software is still an open challenge, either for the industry or the academic
community. Such challenges are mainly caused by the huge and rapid growth of the
network link speeds. It is difficult to deploy DPI systems, performing OTC without
packet loss, while maintaining an acceptable classification completeness.

 This paper addresses the previous issues by proposing some architectural and
software layer modifications that lead to considerable performance gains, using
commodity hardware and software. With those gains, a system that was not able to deal
even with 100Mbit/s without discarding packets in the path through the network
interface, passing by the kernel space to the user space level, is now able to attend a
throughput of 900Mbit/s with nearly 0%of packet loss, and surprisingly increasing the
classification completeness. In order to verify the augmented performance, a traditional
DPI system that runs on a commodity platform, i.e., Linux OS and Intel architecture
was taken as a baseline.

 The DPI system used as baseline has some basic features, namely sequential
processing, libpcap1 library for packet capture and a set of rules or signatures. Some
optimizations are proposed and evaluated within this DPI system at several levels, in
order to obtain the best performance trade-off without specialized hardware solutions.
The contribution of this paper is many-fold: first an architectural level optimization is

1 www.tcpdump.org

2146

proposed to take advantage of all available resources of the operating system. Second, a
slight modification on how packets are forwarded, at kernel level to user space is
implemented. Third, this paper applies and evaluates two other techniques, presented at
[Fernandes et al. 2008], that lead to a considerable improvement to this DPI system,
namely packet counting (PC) and payload truncating (PT). Finally this paper also shows
how subtle modifications on some RegEx (Regular Expression) signatures can increase
the processing speed, by reducing the size of the generated automaton, and decreasing
the packet loss rate.

 The remainder of this paper is organized as follows. Section 2 presents the
essential background needed for the paper understanding. Section 3 presents proposed
optimizations and the methodology that is followed by the evaluations. Then, Section 4
shows the results obtained with the new architecture and proposed approaches. Section
5 presents the related work. Finally, Section 6 discusses some observed points and
Section 7 points out some concluding remarks and future works.

2. Technical Background

2.1. Regular Expressions
Regular Expression (RegEx) is a set of strings, which represent a pattern used to match
a certain string of characters. They provide an enormous expressiveness without
necessity to express the complete desired pattern, so a RegEx can fully represent a
complete protocol communication. They are also used in computer science.

 When RegExes apply a formal description language checking the source code in
a programming language and compiling it, with a variety of writing patterns. They are
commonly represented as automata, which can be Deterministic Finite Automata
(DFA), Non-Deterministic Finite Automata (NFA) and Extended Finite Automata
(XFA). These automata can consume a great bunch of memory if with complex
RegExes also, consuming a huge amount of time to report a successful match. Hence,
one of the features that is directly correlated with the matching time is the number of
greed operators used to represent one RegEx, e.g.* and +, used to match character
chains,. For instance, if a pattern like r.*e is going to search for patterns in the string
“regular expressions”, the reported match would be “regular expre” even if “re”
would be sufficient. This additional searching time may not play a big difference in
applications that do not require results in real time or that even requiring it, does not
have a high income rate. However, when those kind of matching are performed in real
time systems, or those that deal with high traffic rates, for instance, this additional time
can be crucial. Therefore, RegExes must be carefully writtenin order to have acceptable
searching times.

2.2. Traffic Analyzer Module (TAM)
The DPI system used as the baseline of this paper, namely Traffic Analyzer Module
(TAM), uses a set of RegExes signatures. The signature database accomplishes more
than 60 applications, falling into 9 different application classes. TAM was developed
using the C language, using the libpcap library for packet capture, and the C library
regex for RegEx matching.

2147

 TAM is composed of four modules: 1) the capture module, which is responsible
for capturing packets from an Ethernet device; 2) the aggregation module, which
aggregates the packets in to flows and stores them in a hash table for further lookup; 3)
the classification module, which compares the packet payload (only packets that
belongs to unclassified flows) with the RegExes signatures, aiming to classify the
network traffic flows, and 4) the cleanup module, which is responsible to go through
every entry in the hash table and verify whether or not the flows have expired removing
the timed out ones.

 TAM has two basic/main threads, which separate the flow packet analysis from
the hash table cleanup. The cleanup module runs on a thread separate from the other
three modules. This thread is activated on pre-defined time intervals, i.e., 5 minutes. It
is important to remark that when it runs, it locks the hash table that is accessed and
updated by the other three modules. Thus, the capture module has to stop dequeueing
packets from the capture buffer, resulting in undesirable packet losses.

 TAM was developed at the Networking and Telecommunication Research
Group (GPRT)2, from the Federal University of Pernambuco (UFPE). The main
objective of TAM is to capture all the packets that traverse the network in order to
classify them on the fly. To achieve this goal, it aggregates the packets into flows with
the lowest packet loss rate in case of online classification. It was initially conceived to
run in a 34Mbit/s backbone, at the Point of Presence of Pernambuco (PoP-PE) with a
direct link to the Point of Presence of Rio de Janeiro (PoP-RJ), working with no loss of
packets at such speed.

 However, the requirements have changed. Those requirements have increased to
accomplish higher speeds of network links, in this case of study reaching 1Gbit/s. At
this speed, the TAM tool must capture, aggregate and classify packets maintaining as
few as packet losses as possible without significant decrease in the classification
completeness. Although it seems that the use of TAM as a baseline may limit the
generality of our proposal, it is worth emphasizing that the architecture of TAM and its
performance is much similar to other commodity platform-based DPI systems (e.g.
Snort3). Therefore, most of the appointments and conclusions made throughout this
paper can be extended to such similar DPI systems.

3. Proposed Optimizations

3.1. New Architecture
In this paper, it is proposed and implemented a novel multi-threaded architecture to
improve the performance of DPI systems. Each thread, which runs in parallel, will act
as an independent packet inspection component, grouping up the functions of the first
three modules described at Section 2, namely capture, aggregation and classification
modules. Each worker thread has its own capture buffer and an ID number (starting
from 0 for the first thread). These several packet buffers are filled up using the packet
capture library PF_RING [Deri 2004]. This new architecture additionally has he
cleanup module in a separated thread.

2 http://www.gprt.ufpe.br
3 http://www.snort.org/

2148

 This new architecture presents problems related to operation synchronization. It
has to deal with two different levels of synchronization: 1) each thread must be locked
when the cleanup module starts running, and 2) since only one thread would be working
at this time, the other need to wait until it finishes, in order to avoid the access to a flow
that is being cleaned up from the hash table, for instance.

 One manner to create one packet buffer per worker thread is to replicate in all
buffers the packets received, oncethere is no entity responsible to distribute the
incoming packets among the threads. In this sense, a mechanism to detect which packets
are already being analyzed by another worker thread worth it to be implemented,
consequently adding some overhead. Also, even applying such mechanism, if a buffer is
locked by one thread that is analyzing the packets, it may overflow, and packets will be
dropped.

 Those problems could be eliminated if the threads were independent, without the
necessity to share information among each other. This could be achieved if packets
from the same flow were treated by the same thread, that is, if different threads were not
analyzing packets of the same flow. Hence, no thread synchronization would be
mandatory, since each thread would have its own set of flows, leading to a complete
parallel execution. Moreover, each thread would have a private hash table, decreasing
the time spent to search for a flow.

Figure 3.1 – New Architecture

 On this purpose, a Load Balancing Module (LBM) was integrated within the
architecture. The LBM was implemented as a Linux kernel module. This module
distributes the packet load among the worker threads in a way that different threads will
not receive packets of the same flow, avoiding many synchronization problems. This
module intercepts all packets that arrive at the NIC before their entrance on the capture
buffers, assigning the packets to the thread buffer that they belong to. Since each thread
has its own set of flows, there is no need to share the flow information between threads,
therefore, it avoids synchronization costs. This new architecture is shown in Figure 3.1.

2149

 The key point of the LBM is a simple and effective hashing function that is
calculated whenever a packet arrives at the NIC. Such function is described in Equation
1. With this simple hashing function, LBM can guarantee that a given flow, and its
reverse, will be always forwarded to the same thread.

threadID = (IPSrc + IPDst + layer4SrcPort + layer4DstPort + layer3Protocol) mod
numberOfThreads

Equation 1 – Hashing Function

 As mentioned in Section 2.2, most commodity platform-based DPI systems, like
TAM software, have unacceptable packet losses, because of the lock of the classifier
thread at the flow cleanup moment. Since this novel proposal has a private hash table
per thread, then it can obtain an important performance gain with a unique cleanup
module, which is depicted at Figure 3.2. In this example, the cleanup process is
activated every 5 minutes. The cleanup module will only update one hash table a time,
thus, the system still has N-1 threads working in parallel. Therefore, the entire system
would not be locked out, increasing the packet capture rate.

Figure 3.2 – Unique Cleanup Module

 RegEx matching performance is directly dependant on the size of the generated
automaton that represents the expression. Thus, if a RegEx is full of wildcards (*), the
associated automaton size can become enormous, dramatically decreasing the RegEx
matching time. In order to reduce such latency, some RegEx signatures are going to be
rewritten, reducing the size of the generated automaton without loss of precision.

 The final optimizations to be incorporated at this architecture were proposed by
Fernandes et al. [Fernandes et al. 2008], namely PC and PT. It is then expected a
reduction in the packet loss rate when the DPI system is handling with high throughputs
by analyzing: (i) only the first 7 packets of a given flow; and (ii) the first 750 of the
packet payload. Those thresholds were set for PC and PT based on the results of the
study presented in [Fernandes et al. 2008]. Afterwards, PC and PT techniques are going
to be part of the rewritten patterns of the new architecture.

2150

3.2. Methodology
In order to evaluate the packet capture rate when the system is submitted to different
traffic generation loads, an experimental testbed was built, according to what is
described in Figure 3.3. The testbed comprises four machines and one switch, each one
playing the following roles: 1) a measurement machine (M) that will receive the
generated traffic; 2) three traffic generators machines (S1, S2 and S3), also called slave
machines, which replay a previously captured packet trace and send it through the
machine NIC, using tcpreplay4; and 3) a 1Gbps switch, which in charge of aggregating
all traffic and forward it to the measurement machine. The full machines’ configuration
of the built testbed, used for all tests, is described at Table 3.1.

Table 3.1 – Testbed Configuration

Machine Processor
RAM

Memory
Administrative NIC

Traffic Generator/Receiver

NIC
HD

Operating

System

M
Intel Xeon X3210

Quad-core
4GB DDR Onboard Gigabit Offboard, 3Com Gigabit

3x 500GB

Sata HDs
Linux, 2.6

S1
Intel Xeon 5110

Dual-core
2GB DDR Onboard Gigabit Offboard, 3Com Gigabit

1x 250GB

Sata HD
Linux, 2.6

S2
AMD Athlon 64x2

Dual-core
1GB DDR Offboard 10/100Mbit Onboard, nVidia Gigabit

1x 300GB

Sata HD
Linux, 2.6

S3
AMD Athlon 64x2

Dual-core
1GB DDR Onboard Gigabit Offboard , Intel Gigabit

1x 300GB

Sata HD
Linux, 2.6

 It is worth remarking that all experiments were performed using real packet-
level traces collected at one of the largest commercial ISP in Brazil. The passive probe
used to collect the traffic was listening to a router port that was mirrored, in order to
avoid interference in the regular traffic transit, which consists of traffic from/to around
50.000 ADSL subscribers. To make the collected data more representative in terms of
traffic diversity, the network was sniffed for several days, accumulating almost 6TB of
real Internet traffic in different periods of the day. A representative sample of this
collection was selected to be replayed to the measurement machine at these
experiments.

 The following metrics are considered in the experiments:

1. Packet Loss Rate

Loss of packets is one of major concerns when applying DPI at the wire rate, especially
when using commodity hardware. It also impacts the classification completeness. The
rate of the traffic generated by the slave machines was varied, in order to evaluate how
much traffic each DPI version can handle. The starting point was 100Mbit/s, after that
the rate was increased by a factor of 100, up to 900Mbit/s.

2. Classification Completeness

Classification completeness is the percentage of volume or flows that is classified by
the system. It is important to develop a DPI system that has no packet loss, besides
providing a good level of with completeness.

4 http://tcpreplay.synfin.net/trac/

2151

Figure 3.3 – Testbed Architecture

4. Evaluation and Results
At first, it is shown in Figure 4.1 (a) how the DPI baseline system performs on the
lowest packet incoming rate (100Mbit/s). Each point of the line corresponds to the
percentage of the packets that were lost after received at the NIC in the period of one
second. Additionally, Figure 4.1 (b) contains the results obtained when the novel
architecture proposed in this work is evaluated at the same rate, 100Mbit/s. As shown in
the figure, even with a lower packet incoming rate, the original DPI system has severe
losses of packets, reaching on average almost 60%. It is also important to remark that at
time that the cleanup thread is triggered, i.e. in intervals of 5 minutes, the system loses
100% of the packets received.

Figure 4.1 – Packet Loss, Original DPI (a) vs. New Architecture (b) (100Mbit/s)

 The New Architecture has a new packet capture mechanism, switching from the
libpcap to a fine-tuned PF_RING. From now on, the shared circular buffer between
kernel and user space will avoid unnecessary packet copies between them, therefore it
will increase the system throughput.

2152

 Figure 4.1 (b) shows that, at 100Mbps the New Architecture outperforms the
original one and has some losses at the beginning of the measurement. The mains
reason for this behavior is that when the DPI is initiated, almost every packet that
arrives could represent a new flow. Therefore, the DPI will try to classify almost every
packet, which can lead to such loss peaks. However, as long as those flows are
classified by the DPI, the arrival rate of new flows starts reducing and it has minimal
packets losses.

 Figure 4.2 shows that the New Architecture dramatically improves the packet
capture rate up to 300Mbit/s. However, with incoming rates greater than 300Mbit/s, the
new DPI .still faces severe losses.

Figure 4.2 – Packet Loss, original DPI vs. New Architecture

 One of the key proposed optimization technique was the new multithread
architecture, which distributes the capture and analysis tasks among several threads.
Please note that only deploying this multithread feature would not be enough to
minimize losses, without the help of LBM. By providing a load balancing component,
the new DPI can eliminate synchronization problems, by making sure that there will
exist a N:1 relation between flows and threads. In other words, the worker threads will
effectively work in parallel. Additionally, the single cleanup module can ensure that,
even when it starts its operation, there will be, at least, N-1 threads working.

4.1. Packet Counting (PC) and Payload Truncating (PT)
By inspecting only the first 7 packets of a given flow (PC feature), we expect that
packet losses will be minimized even at a incoming rate beyond 300Mbps. Although, it
has an impact on the DPI accuracy, such approach provides good completeness levels
[Fernandes et al. 2008]. Then, another improvement in the new DPI was integrated,
namely the use of the PT technique, which takes into account only the first 750 bytes of
the packet’s payload. The performance evaluation results are presented at Figure 4.3.

 The results show that the packet loss rate can be dramatically reduced when the
RegEx matching is limited to the inspection of the first 7 packets of a given flow. At
900Mbps, the New Architecture presented only 38.58% of packet loss rate, against
96.57% of the original DPI.

2153

Figure 4.3 – Packet Loss: original DPI vs. New Architecture with PC and PT

 The packet loss rate had a considerable reduction when PT technique was
applied, and the results obtained with the PC technique are remarkably better. Both of
these improvements do not present packet losses until an income rate of 200Mbps,
against 56.94% and 79.11% for the original DPI system, in a rate of 100Mbps and
200Mbps respectively. The dropped packets at the highest rate income rate, 900Mbit/s,
have suffered a slightly reduction for the original DPI technique from 96.57% to
84.72%.

Figure 4.4 – Classification Completeness

 The original DPI system analyzes all packets from a given flow, although the
classification completeness is approximately 25% in terms of byte volume, as shown in
Figure 4.4. . Such a high level of unclassified traffic is justified because of its high
packet loss rate, which is 96.57% at 900Mbit/s. Those dropped packets carry the
signatures of applications in their payload that are recognized by TAM. The release that
analyses only the first 7 packets could classify around 77% of the volume share On the
other hand, this release captures packets from more flows with a better regularity,
besides, there is also a high probability of the signature be located at the first packets
too. The same behavior on the classification completeness occurs for the PT technique.
The amount of volume that was classified when inspecting only the first 750 bytes of
the packet payload is approximately 57%, which is greater than twice as much as the
classification completeness of the original DPI. In the cases that PC and PT techniques
were used, a smaller amount of data being analyzed contributed to better classification

2154

completeness when the packet income rate was greater than the rate that the system can
actually deal with.

Table 4.1 – Analyzed traffic statistics (700 Mbit/s)

Version Number of Captured Flows Captured Volume (GB)

Analyzing all packets 3,222,939 6.56

Analyzing first 7 packets 13,149,126 136.86

 The Table 4.1 summarizes a comparison of two TAM releases in terms of the
number of flows and the amount of volume (GB) that could be actually captured at
700Mbit/s speed. The releases are the one that represents the original DPI system and
the other implements the PC optimization. It shows how the number of flows and the
byte volume captured by the New Architecture, analyzing only the first 7 packets, is
much greater than what is captured by the original DPI system. In terms of flows, it is 4
times greater and about 21 times as much as volume.

4.2. Evaluation with Rewritten Patterns
The main bottleneck of a common DPI is the RegEx matching operation. In order to
improve performance some patterns were rewritten, mostly related to use of
unnecessary greedy quantifiers like * and +. Such modification on those patterns have
reduced its generated automata size and consequently reduced its searching time.

Figure 4.5 – HTTP RegEx

 For instance, a common pattern that recognizes the HTTP protocol is described
at Figure 4.5. This pattern has a greedy quantifier at its end, which denotes zero or more
repetitions of any characters in the range specified inside the brackets (3rd Block). This
quantifier is completely unnecessary, since that a payload to successfully match this
RegEx only needs to have the first two blocks of the expression, making no difference
whether there are more characters or not after these blocks. This indifference is caused
by the quantifier *, denoting zero or more repetitions. Thus, removing the final block of
this expression can lead to a considerable gain in the matching speed, since the greedy
quantifier will not be present and spending unnecessary time, looking for more
characters. Therefore, the 3rd block of this RegEx was removed, resulting in a new
pattern. Several RegExes for a number of protocols were revised, although we do not
show here due to lack of space.

 Figure 4.6 shows that the packet loss rate was reduced from 56.94% to 0%, in
100Mbit/s, and from 96.57% to 90.32%, in 900Mbit/s. As expected, the classification
completeness increased since more packets were captured at the user space. Figure 4.7
shows that the classified volume has increased from 25%, in the original DPI, to
51.78%, in the new architecture with rewritten patterns.

2155

Figure 4.6 – Packet Loss, original DPI vs. New Architecture (Rewritten RegEx)

Figure 4.7 – Classification Completeness, Rewritten Patterns (Bytes)

4.2.1. All Techniques Together
In order to obtain the highest packet capture rate, the techniques mentioned on this
paper were combined with the New Architecture, leading to a high performance DPI.

 Figure 4.8 shows the loss rate of the new DPI with all techniques combined. It
starts to drop packets only at 800Mbit/s. At 900Mbit/s the loss rate is around 0.15%.

Figure 4.8 – Packet Loss, Original DPI vs. New Architecture (all techniques)

2156

 Additionally, the classification completeness reached the greatest classified
volume. The Figure 4.9 shows that the classified byte volume has increased from 25%,
with original DPI, to almost 80%, with the New Architecture and mixed techniques,
thus representing a gain of 220%.

Figure 4.9 – Classification Completeness, Mixed Techniques (Bytes)

5. Related Work
There are several works in the scientific community that bring up a great contribution to
the achievement of higher DPI performance and accuracy for traffic analysis and
classification. Deri [Deri 2004] proposes a new type of kernel socket, called PF_RING,
which is able to improve drastically the packet capture rate on Linux-based systems.
Using PF_RING sockets, one packet does not have to go through the entire delivery
protocol stack from the NIC to the user application, but it takes a straight path from
kernel to user space. This new socket is based on a circular buffer, which is shared
between kernel and user spaces, and handles incoming packets. His technique has
outperformed other known packet capture approaches. He also extended his previous
work with PF_RING and proposed nCap [Deri 2005]. It is seen as a further
improvement to the packet capture rate in Linux-based systems. The author created a
solution for packet capture and transmission at wire speed. His evaluation showed that
the proposed approach has better performance than PF_RING. However, as nCap is at
the driver layer, it is bound to a specific kind of NIC, the Intel GE 32-bit.

 Bernaille et al. [Bernaille et al. 2006] have studied TCP flow classification with
low CPU power consumption. His approach consisted of analyzing the size of the first
five packets of a TCP flow, achieving a high packet capture rate since RegEx matching
is not performed. Although, that approach has several drawbacks including: 1) it does
not perform well for short flows (with less than five packets); 2) it needs to track the
reverse flow, and sometimes the reverse flow does not follow the same path, thus, it is
not suitable for measurements at ISP routers, for instance; 3) the packet size is not a
precise classification criterion as different applications can have the same packet size
distribution; and 4) it is not applicable to UDP flows.

 Sen et al. in [Sen et al. 2004] have done a study on peer-to-peer (P2P)
application classification, using signature matching and performing analysis on five
widely known P2P protocols. They used fixed string signatures of those protocols,

2157

aiming to evaluate the accuracy of those signatures. They were able to show that the
packet examination is only needed on the first packets of a given flow, i.e. less than 10
packets, which led to less than 5% of false positive results in some protocols.

 Yu et al. [Yu et al. 2006] proposed a fast and memory-efficient solution to
RegEx matching. They have analyzed the computational and storage cost of building
individual DFAs for matching RegEx. Thus, based on such analysis, they proposed two
rewriting rules that can dramatically reduce the size of the resulting DFAs, reaching
99% of reduction. Following, techniques to combine multiple DFAs into a small
number of groups were developed, improving the matching speed.

 In [Kumar et al. 2006], the authors introduced a new representation for RegEx,
called Delayed Input DFA (D2FA). This modification in the original DFA substantially
reduces its space requirements. The authors explored the outgoing transitions shared by
sets of states and introduced a special kind of transitions called default transitions. It
showed that even reducing the number of edges of a given automaton, the same set of
patterns could be recognized. That approach reduced the number of edges by more than
95%.

 The authors Fernandes et al. [Fernandes et al. 2008] have proposed techniques to
obtain considerable performance gains in DPI systems. Their techniques consisted in
analyzying only the first packets of a given flow and truncating the packet payload.
They reported that if analyzing only the first 7 packets, it would be sufficient to
successfully classify a flow, hence, reducing the processing time in almost 80%.
Additionally, they have shown that analyzing only first 750 bytes of the packet payload
can lead to a performance and accuracy trade-off.

 In [Smith et al. 2008], the authors show a solution that addresses the known
problem of state explosion related to automata, which are commonly used to represent
RegExes. They propose techniques aiming to combine XFAs, eliminate ambiguity and
optimize the memory usage and performance of those automata. They performed tests
on Snort and on Cisco Systems, in order to validate their techniques achieving
impressive results.

 The authors in [Po-Ching Lin et al.] present the importance of string matching
for traffic identification and analysis, also citing some approaches on string matching
algorithms development. They cite the Automaton-based (using DFAs and NFAs),
Heuristic-based (that can make shifts while searching for a string in a payload, in order
to avoid unnecessary comparisons) and the Filtering-based approaches (that makes a
pre-filtering of the payload, to exclude patterns that definitely do not match). They
discussed the pros and cons of those techniques.

6. Discussion
In the previous sections, some optimizations were discussed, deployed and evaluated.
One of the key points was to confirm that problem solving always starts with a carefully
architecture and design planning. Those points were reflected on the combination of the
multi-threaded approach and LBM. Hence, without those preliminary optimizations,
none of the presented gains would be possible to achieve in the original DPI.

 However, PC and PT optimizations have to be carefully used. For instance, PT
technique can change the traffic profile of the analyzed network. Chances are that

2158

signatures may perform a successful match, even against the correct one that would
match at the truncated payload block. Additionally, if PC is performed with a small
threshold for the number of packets, a significant amount of traffic can become
unclassified, since some application protocols do not write their signatures in the first
packets of a flow.

7. Concluding Remarks
This paper has shown how system developers can fine-tune DPI systems, by
implementing careful modifications that will lead to considerable performance gains.
By doing so, a DPI system that is not able to cope with high packet incoming rates (e.g.
at 1Gbit/s) can handle such traffic load with no decrease in classification completeness.

 Those mentioned performance gains are summarized in the steps made in each
optimization phase, thus resulting in a gain of almost 100%, reducing from 96.57% of
packet losses, in the Original DPI at 1Gbit/s, to 0.15%, in the New Architecture with all
optimizations combined. Additionally, this paper has shown how DPI systems can take
a great advantage when analyzing the first packets of a given flow, and truncated
payload, with considerable gain in classification completeness, around 220%.

 In Section 4.2, the results have shown that RegEx rewriting is a valuable
technique that can lead to considerable performance, without a huge effort. However,
only few RegExes were rewritten, those that presented the most critical problems, in a
groupof about 40 RegExes. Due to this reason, we can envisage as a future work the
evaluation of other RegExes, the identification and revision of challenging signatures
can lead to additional improvements. Additionally, there are other RegEx libraries that
can be evaluated and compared with the one used in the original DPI.

References
Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., and Salamatian, K. 2006. “Traffic

classification on the fly,” In: SIGCOMM Comput. Commun. Rev. 36, 2 (Apr. 2006),
23-26.

Deri, L., “Improving Passive Packet Capture: Beyond Device Polling,” In: Proceedings
of SANE 2004, 2004.

Deri, L., “nCap: wire-speed packet capture and transmission,” In: Proceedings of the
End-to-End Monitoring Techniques and Services. Workshop, p.47-55, May 15-April
30, 2005.

Fernandes, S., Antonello, R., Lacerda, T., Santos, A., Westholm, T. and Sadok, D.,
“Performance Optimization for Deep Packet Inspection Systems,” In: Proceedings of
the 12th IEEE Global Internet Symposium 2009.

Karagiannis, T., Broido, A., Brownlee, N., claffy, kc, and Faloutsos, M., “Is P2P dying
or just hiding?,” In: IEEE Globecom 2004 - Global Internet and Next Generation
Networks, 2004.

Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., and Turner, J. 2006. “Algorithms to
accelerate multiple regular expressions matching for deep packet inspection,” In:
Proceedings of the 2006 Conference on Applications, Technologies, Architectures,

2159

http://portal.acm.org/citation.cfm?id=1253236&dl=GUIDE&coll=GUIDE&CFID=11652712&CFTOKEN=21680534
http://portal.acm.org/citation.cfm?id=1253236&dl=GUIDE&coll=GUIDE&CFID=11652712&CFTOKEN=21680534
http://portal.acm.org/citation.cfm?id=1253236&dl=GUIDE&coll=GUIDE&CFID=11652712&CFTOKEN=21680534

and Protocols For Computer Communications (Pisa, Italy, September 11 - 15, 2006).
SIGCOMM '06. ACM, New York, NY, 339-350.

Po-Ching Lin, Ying-Dar Lin, Yuan-Cheng Lai, Tsern-Huei Lee, "Using String
Matching for Deep Packet Inspection," In: Computer, vol. 41, no. 4, pp. 23-
28, Apr., 2008.

Sen, S., Spatscheck, O. and Wang, D. “Accurate, scalable in-network identification of
p2p traffic using application signatures,” In: Proceedings of the 13th international
Conference on World Wide Web. WWW '04. ACM, New York, NY, 512-521.

Smith, R., Estan, C., Jha, S., and Kong, S. “Deflating the big bang: fast and scalable
deep packet inspection with extended finite automata,” In: SIGCOMM Comput.
Commun. Rev. 38, 4 (Oct. 2008), 207-218.

Yu, F., Chen, Z., Diao, Y., Lakshman, T. V. and Katz, R. H., “Fast and memory-
efficient regular expression matching for deep packet inspection,” In: Proceedings of
the 2006 ACM/IEEE Symposium on Architecture for Networking and
Communications Systems. ANCS '06. ACM, New York, NY, 93-102, 2006.

2160

	1. Introduction
	2. Technical Background
	2.1. Regular Expressions
	2.2. Traffic Analyzer Module (TAM)

	3. Proposed Optimizations
	3.1. New Architecture
	3.2. Methodology

	4. Evaluation and Results
	4.1. Packet Counting (PC) and Payload Truncating (PT)
	4.2. Evaluation with Rewritten Patterns
	4.2.1. All Techniques Together

	5. Related Work
	6. Discussion
	7. Concluding Remarks
	References

