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Abstract. Complex networks model real networks found in a wide range of do-
mains from biological and social to technological environments. Their nature
inherently dynamical emerges from ubiquitous and autonomic characteristics.
Thus, assessing their behavior when dealing with failure and attacks is relevant
to define mechanisms of control and recovery. However, practical aspects makes
global metrics not measurable. Moreover, standard local metrics are not suit-
able to deal with global properties. In this paper, we present a new local metric
to detect global changes in complex networks using local neighborhood infor-
mation. The results show that the proposed metric accomplished satisfactory
results for scale-free, small-world and random networks.

Resumo. Modelos de redes complexas são encontradas em uma ampla gama
de aplicações, desde redes em ambientes biológicos e sociais até ambientes
tecnológicos. A sua natureza intrinsecamente dinâmica é resultado de carac-
terı́sticas de autonomia e ubiquidade. Desta forma, avaliar o seu comporta-
mento face a falhas e ataques é relevante para definir mecanismos de controle e
recuperação. No entanto, aspectos práticos tornam métricas globais não men-
suráveis. Além disso, as métricas locais não são adequadas para lidar com
propriedades globais. Neste trabalho, apresentamos uma nova métrica local
para detectar mudanças globais em redes complexas considerando o conceito
de informação da vizinhança. Os resultados mostram que a métrica proposta
obteve resultados satisfatórios para redes livres-de-escala, mundo-pequeno e
aleatória.

1. Introduction
We are surrounded by environments and systems which can be classified or modeled as
complex networks. They may be found in nature, for example in ecological food webs
[Almaas and Barabasi 2004], Escherichia coli [Wuchty 2003], neurons in Caenorhab-
ditis Elegans worms [Watts 2003]. Complex networks may also be models for so-
cial [Dodds et al. 2003] [Holl and H 2003] and technological networks, such as P2P,
overlay, sensor, and communication networks [Broder et al. 2000] [Faloutsos et al. 1999]
[Lua et al. 2005] [Biskupski et al. 2007]. These networks are formed and evolve in an ad-
hoc manner. They are naturally self-organized and the interactions among their elements
take into account only local information which is a cause for many systemic properties to
emerge.
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As complex networks are present in several domains under environments that
are usually large, complex, highly dynamic and heterogeneous many studies, in dif-
ferent contexts, have been developed to understand how they are naturally organized,
how they are shaped and how they evolve [Watts 2003] [Albert and Barabasi 2002]
[Vega-Redondo 2007] [Newman 2003]. The main shared statement is that although com-
plex networks formations are targeted to achieve specific objectives and functionalities,
all of them show similar organizational principles. The understanding of these mecha-
nisms supports the design of computational models and metrics, which can further foster
a better understanding about their dynamical aspects and evolution process, as well as
their characteristics.

Regarding to structural properties of the complex networks both global and local
characteristic are relevant. Global assessment is often performed by computing the aver-
age of the shortest distance between any two nodes in a network, namely characteristic
path length (L) [Newman 2003]:

L =
1

1
2
n(n + 1)

∑

i≤j

dij, (1)

where dij is the geodesic distance from vertex i to vertex j. In contrast, local
analysis provide a mechanism to quantify the existence of tightly linked subgraphs, that
is, it measures the cliquishness of a typical neighborhood and then, can expresses the
configuration of the cluster in which a node is taking part. Consider a node i which
has ki connections to other nodes and li edges between these ki nodes. If the nearest
neighborhood of i was part of a clique, there would be ki(ki − 1)/2 edges between them
[Albert and Barabasi 2002]:

Ci =
2li

ki(ki − 1)
(2)

The average over all network elements gives the clustering coefficient (C) and
expresses the cohesion of its elements. Another crucial statistic is the degree distribution,
that describes the pattern which originates from the formation of links among nodes in
the network and can determine some particular characteristics in the network dynamic.

The evaluation of real networks based on these properties concern that most pairs
of nodes seem to be connected by short path lengths, being very efficient for global com-
munication and information spreading, a phenomenon known as small-world. It is im-
portant to note that Erdős and Rényi [Erdős and Rényi 1960] have demonstrated the same
characteristic for random networks. But, on the other hand they exhibit a much higher
cluster coefficient than random graphs and a degree distribution which deviates from the
typical distribution of random graph (Poisson). These characteristics have established
two major classes of network topologies: small-world (SW) and scale-free (SF). Figure
1 show examples of SW, SF and random networks to point out their main topological
differences.

Scale-free topologies are present in many real networks [Newman 2003]
[Almaas and Barabasi 2004] and exhibit the same SW pattern for L, as well as a high clus-
ter coefficient C, but the distribution of node degrees follows a power-law P (k) ∼ k−γ ,
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(a)

(b)

(c)

Figure 1. Example of network topologies random (a), SF (b) and SW (c) with
N = 20 , 〈k〉 = 4.

where P (k) gives the probability that a randomly selected node has exactly k edges (Fig-
ure 2 (b)). Consequently, it means that a few nodes have many connections, in contrast
with random networks (Figure 2 (a)) that exhibit degree distribution approaching a Pois-
son distribution (line). As can be seen in Figure 2 (c) the degree distribution presented in
small-world networks model proposed by Watts [Watts 2003] [Watts and Strogatz 1998]
is almost uniform.

Despite these well-defined properties, realistic models of networks such as the so
called ad-hoc networks do not rely on any fixed or predefined infrastructure, on the con-
trary their intrinsic features such as mobility, with nodes leaving or joining the network,
often cause frequent changes in their topologies. In addition, these networks are subject
to technical problems (failures), or even intentional attacks.

Thus, nodes rely on each other to keep the network connected, and one of the
main goals for network applications is to ensure that the network services will be avail-
able and working efficiently regardless of frequent topological changes. In fact, several
researchers have studied the impact of failures and attacks into the network structure
[Dall’Asta et al. 2006] [Crucitti et al. 2004] [Albert et al. 2000], considering it an impor-
tant issue to define mechanisms to support efficiency improvement or system stability in
such adverse conditions.

A rather studied aspect is the behavior of the topology when nodes are dropped, in
particular what fraction of nodes must be removed before the network splits or breaks
into isolated clusters, and what are the properties of such groups. It is known that
complex networks are very robust against failures, but very vulnerable against attacks
[Latora and Marchiori 2002] [Albert et al. 2000]. Thus, to evaluate the network effi-
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Figure 2. The degree distribution averaged over 30 random (a), SF (b) and SW (c)
graphs with n = 1000 and 〈k〉 = 6

ciency, an appropriate measure must be used.

At first glance, the intuitive measure to be used is the characteristic path length L,
because it can express how far apart the nodes are from each other, in other words, how
efficient the network is with respect to information dissemination through its elements.
When the focus of analysis (as in this paper) is the network behavior against attacks and
failures, the network has always a chance of becoming disconnected. In such case, L is not
appropriate because it considers the average of the shortest path lengths over all nodes in
the network, and some of them would not be reachable. This means that adjustments are
necessary to perform efficiency computation, especially when considering that isolated
clusters can continue to perform tasks and exchange information. Another issue is that
both L and C are well-defined only for topological/unweighted graphs, and real networks
usually exhibit information about node relationships.

Lattora et al [Latora and Marchiori 2002] [Crucitti and Latora 2001] introduced
the efficiency E which measures how efficiently the nodes exchange information in a
local or global scope, independently of whether the network is weighted or topological. It
can also be applied to disconnected graphs. Consider a graph G where dij is the smallest
sum of the physical distances throughout all the possible paths between nodes i and j.
The efficiency Eij is inversely proportional to the shortest distance: Eij = 1

dij
. If there is

no path between them, the distance dij is +∞, and therefore Eij = 0. Thus, the global
efficiency of a graph G can be defined as:
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Eglob(G) =

∑
i6=∈G

Eij

N(N − 1)
=

1

N(N − 1)

∑

i6=∈G

1

dij

(3)

The efficiency Eglob defined in 3 ranges in [0,∞]. To normalize it, consider the
ideal case Gideal where all the possible N(N − 1)/2 edges are in the graph. This is
the case when Eglob assumes its maximum value. Then, the normalized efficiency is

Eglob(G)

Eglob(Gideal)
. On the other hand, the local efficiency 4 represents the average efficiency of

local subgraphs. Note that it is equivalent to the cluster coefficient:

Eloc(G) =
1

N

∑

i6=∈G

E(Gi) where (4)

E(Gi) =
1

ki(ki − 1)

∑

l 6=m∈Gi

1

dlj

(5)

and Gi is the subgraph containing all nodes directly connected to i (ki is its de-
gree).

These concepts of efficiency are appropriate to the context of failures and attacks
in both topological and weighted networks, and are adopted in this work to evaluate the
network efficiency. However, in general the sheer size of the networks, the operational
constraints (e.g., node mobility) and the need to make decisions quickly make the com-
putation of global measurements unfeasible, and local metrics are required for network
evaluation.

Implicitly, the requirement for locality allows each node to be autonomous and
able to make decisions about its configuration, considering local network behavior in
order to achieve global objectives, or even to perform cooperative tasks when necessary.
This implies that the nodes of the network must be ”aware” of the network status (albeit
in a localized manner), as well as have mechanisms to recognize and react to changes.

The main issue is then how a node or a cluster can be ”aware” to predict and take
advantages of the global status of the network. For instance, when the global efficiency
is affected, node or group mechanisms may be triggered to reduce its impact. Also, when
efficiency increases, the nodes can take advantages of this to perform tasks that require
high reliability or performance. Mechanisms to learn the pattern of network operations in
various scenarios are also useful.

Thus, the main goal here is to evaluate the measurements that are potentially useful
for capturing global network changes considering only local information. As the network
topology is not previously known, three of the major classes of topologies found in real
complex networks (scale-free, small-world and random networks) were considered for
the analysis of both purely topological and weighted relations.

The rest of the paper is organized as follows. In section 2 the behavior of complex
networks against attacks and failures is analyzed. Section 3 discusses the use of classical
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measures to estimate global efficiency. In Section 4, a new local metric to capture the
global state of the network using local neighborhood information is presented, together
with the obtained results. Finally, Section 5 presents the main conclusions and some
directions for future work.

2. Attacks and Failures in Complex Networks

Evaluating the behavior against failures and attacks requires a methodological approach
that is briefly sketched in what follows. As noted above, the network topology is assumed
not known in advance and its behavior is therefore unpredictable. However, several stud-
ies [Crucitti et al. 2004] [Albert and Barabasi 2002] [Newman 2003] pointed out that it is
possible to find similar patterns in its formation, such as small characteristic path length
and high cluster coefficient. This means that real networks are very efficient to dissemi-
nate information and the structure of their groups is very cohesive. Then, the likelihood
of groups of nodes remain connected when a node is lost is large.

These two important properties (stable patterns and group cohesiveness) are
present in SF and SW networks. As far as the degree distribution is concerned, most
real networks show power-law distribution, but different patterns can be found. As our in-
tent is to assess both network behavior and metrics performance in unknown topologies,
we used three different topological models for the sake of generalizing the results: SF,
SW and random networks. All show a small characteristic path length, differing however
in degree distribution and cluster coefficient. SF networks have a power-law tail degree
distribution, random networks hold Poisson degree distributions, and in SW topologies all
nodes have almost the same number of connections. Regarding the clustering coefficient,
SF and SW exhibit high C, but random networks exhibit poor clustering.

In these sense, a specific predefined procedure is adopted to build such net-
works. Each one has a particular method and a set of parameters that are not speci-
fied here because this is not the focus. However, we make sure that all generated net-
works show the same number of nodes and an equivalent number of edges, as well
as the expected features. Small-world networks were generated by Watts and Strogatz
β-model (WS) [Watts 2003]. Considering scale-free as networks which present small-
world properties plus preferential attachment, the model created by Klemm-Euguluz (KE)
[Klemm and Eguı́luz 2002] was used. The model of random graphs used to generate
random networks is G(n, p) where n is the number of nodes and p is the independent
probability 0 < p < 1 that exists an edge between every possible pairs of nodes in G
[Erdős and Rényi 1959].

In order to evaluate the impact of failures and attacks global (3) and local effi-
ciency (4) were used to compute network efficiency. To change a network global status,
two distinct strategies were used: one to decrease and another to increase network effi-
ciency. For the first one, three strategies were considered, one for failures and two for
attacks. To mimick failures, the nodes were chosen randomly with uniform distribu-
tion. To perform attacks, the better positioned nodes must be dropped. There are several
centrality measures which allow ranking nodes ordered by its importance, each of them
underlying some useful characteristic for network analysis. In the cases we consider here,
the probability that a node can disconnect the network or be harmful to its performance
is relevant to evaluate network robustness, survival and resilience. For this, two centrality
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metrics were adopted. The first one is Degree Centrality (DC), defined in (6) and where
the central nodes are simply the ones that hold more ties to other nodes in the network
[Wasserman et al. 1994]:

CD(ni) = d(ni) (6)

where d(ni) is the degree of node i.

The second centrality metric is Betweeness Centrality (BC) — defined in (7) —
which establishes as high scoring the nodes which play an important role in the interac-
tions between other nodes, that is, the node which is contained in most of the shortest
paths between all the pairs of nodes in the network shows the largest score. The BC of
node i is computed considering the number of geodesic paths linking all pairs of nodes
(not including i) presented in the network (gjk(ni)) in which i is included. As, in such
case, all geodesics are equally likely to be chosen, the probability of a link is calculated
by gjk(ni)/gjk, where gjk is the number of geodesics paths between actors j and k. Then,
the BC of node i is the sum of these estimated probability over all pairs of nodes not
including i [Wasserman et al. 1994]:

CB(ni) =
∑

j<k

(gjk(ni)/gjk) (7)

The evaluation of variability in the network efficiency must take into account the
efficiency increasing. in order to achieve this some experiments using BC and DC to rank
the network nodes and creating links between nodes under different combinations were
performed. For instance, we created links between nodes with lowest DC and highest
DC. Note that this strategy uses global information, but now the point is only to evaluate
metrics that can capture the increase of the network efficiency. It was observed that cre-
ating links between nodes with high degree of centrality and low betweeness centrality
the global network efficiency increased, because nodes which were (likely) at the network
boundaries were connected to others with high degree, adding shortcuts to the network.

Figure 3 shows the initial network scores for local and global efficiency, as well
as their oscillations when exposed to continuous attacks and failures. All results were
averaged over 30 networks containing 100 nodes and 300 edges (M ∼ 300). In each
iteration a node was chosen to be dropped from the network in accordance to the priorities
previously defined: highest DC, highest BC and randomly. Then the global and local
efficiency were computed. As it may be noticed, initial global efficiency is fairly similar
for all networks, but local efficiency is higher in SW and SF networks. However, they
react differently against failures and attacks.

In general, the global efficiency and local efficiency were lightly affected by fail-
ures in every network topology. In fact, global and local efficiency are hardly affected at
all in random networks. Indeed, this happens because the choice for node removal is ran-
dom: sometimes nodes at the border, and sometimes well-centralized nodes are chosen
for removal. In contrast, the defined strategies of attack (BC or DC) affect SW and SF
network efficiencies in different ways. This is understandable, because a) the strategy to
compute them is not the same and b) the degree distribution in both topologies is different.
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SW topologies generated by β-model inherit characteristics of regular lattice
topologies, where the degree distribution is uniform and just a few nodes play the role
of connecting to other nodes far apart in the network, thus supporting shortcuts in node
communication. This implies that node degree centrality in these networks is uniform, but
node BC is more heterogeneous (nodes playing the role of shortcuts have higher BC).
Moreover, those nodes with high BC have links with other nodes which are not in the
same neighborhood, then decreasing local efficiency. Regarding to attacks when they are
directed to high BC nodes, the network looses an important channel of communications,
affecting the dissemination of information, even though the neighborhood becomes more
robust locally. Also, the network can potentially be split.
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Figure 3. Efficiency - Failures/Attacks.

Attacks targeted to high DC nodes are less harmful because the degree distribution
is uniform, thus the probability to disconnect shortcuts is also uniform. When these nodes
are chosen the efficiency decreases faster, but on the contrary the global efficiency may
be less affected. Global efficiency is more affected at the beginning, but along time the
values approach those of random graphs. Notice that at this point, in spite of attacks to
nodes with high degree, the global efficiency is not much affected as SF networks, the
local efficiency remains high and the curve slop drops slightly.

The main reason for this might be a larger number of nodes playing the role of
shortcuts. The SF networks are more affected by attacks than SW ones. The node degree
in SF networks is more heterogeneous, as the probability that any node links to another
node is proportional to its degree. Global efficiency decreases a little faster for BC than
DC attacks. On the contrary, local efficiency decreases faster for DC attacks. This hap-
pens because nodes with high degree are linking nodes with low degree, making local
connectivity more affected.
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3. Evaluation of Classical Metrics
To evaluate the adequacy of the metrics we considered, for each network change, the
global efficiency Eglob(G) (3) and the score obtained by each node Sci according to the
target metric. Each pair (Eglob(G), Sci) was classified as:

• True Positive (TP ): if both Eglob(G) and Sci increase, that is, the node i might
detect the global efficiency increase.

• True Negative (TN ): if both Eglob(G) and Sci decrease, that is, the node i might
detect the global efficiency decrease.

• False Negative (FN ): if Eglob(G) increases and Sci decreases, but the node i
detected that global efficiency decreases.

• False Positive (FP ): if Eglob(G) decreases and Sci increases, that is, the global
efficiency decreases, but the node i detected that global efficiency increases.

After that, the number of TP (]TP ), TN (]TN ), FN (]FN ) and FP (]FP )
were counted. To evaluate metrics performance, normalized measures known as recall
and precision were used. Recall means the percentage of matches of the recovered pairs
(eglob, Sci). Precision means the percentage of pairs (eglob, Sci) which correctly de-
tected the state of the network. Thus, it was possible to evaluate the metric precision and
recall in both scenarios, when global efficiency increases (↑)(8) (9) and when it decreases
(↓) (10) (11).

recall ↑= ]TP

]TP + ]FN
(8)

precision ↑= ]TP

]TP + ]FP
(9)

recall ↓= ]TN

]TN + ]FP
(10)

precision ↓= ]TN

]TN + ]FN
(11)

3.1. Centrality measures
The initial studies were focused on the evaluation of centrality metrics to detect global
efficiency. The results (not shown here due to space limitations) were significant to un-
derstand the overall network behavior, but not to detect global efficiency variation. They
revealed that usually node centrality and global efficiency change in different ways. For
example, a node which shows high centrality and low degree probably connects two clus-
ters which are apart. This node affects the centrality of other nodes in both clusters. If
this node is dropped, nodes which were in the border of the cluster before will get better
centralized, but the global efficiency is likely to be heavily affected.

3.2. Local efficiency
As expected, experiments have demonstrated the poor performance of the local efficiency
measure (4) to detect global changes. Indeed, most of the nodes could not detect global
changes, as might be inferred from the previous discussions and results (Section 2). The
results show that recall and precision for detecting both decrease and increase of global
efficiency were below 0.03. In fact, most of nodes (≈95%) did not alter significantly their
values of local efficiency when global efficiency changed.
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4. Using Neighborhood Information
The observed behavior of complex networks when exposed to attacks and failures and
the results obtained with centrality and local efficiency measures make new approaches
necessary. The analysis of the results previously reported, makes clear that is more impor-
tant to capture the range of nodes that can be reached before and after network changes.
The most intuitive and simple metric is the nodal degree, but considering a range greater
than closer (direct) neighbors, comprising the neighbors at some distance greater than 1.
Neighborhood connectivity rth is defined as the number of nodes connected to node i at a
shortest distance exactly equal to r [Vega-Redondo 2007]:

N i
r = j ∈ N{i}:∃K0 · · · , Kr ∈ Ns.t

ks−1ks ∈ L(S = 1, 2. . . , r),

k0 = i, kr = j\∪s = 1r−1N s
i (12)

Once neighborhood connectivity of node i is computed using local information,
the idea is to use it as a measure to detect global changes. At first it was considered a
database containing networks with 100 nodes (N = 100), 300 edges (M ∼ 300) and an
average degree of 6 (〈k〉 ∼ 6) for all considered topologies. Links have values in the range
0.01 − 1 for weighted and 1 for topological networks. Taking into account these values
the neighborhood connectivity rth was set to 2 (r = 2). The results presented in Figures
4, 5 and 6 encompasses averages over 30 networks where 30 percent(30%) of the nodes
were dropped.

The left half shows the results for global efficiency increase (eglobal ↑), and the
right half for global efficiency decrease (eglobal ↓) when either attacks (BC, DC) or
failures are present. However, in all evaluated scenarios (Figure 4), recall and precision
were not significant for attacks, and despite the precision score for errors being between
0.49 and 0.39, the performance of the N i

r measure was not compelling.
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Figure 4. N i
r recall and precision - weighted networks.

Intuitively, when network efficiency changes the amount of information flowing
through the network also changes. Then the concept of neighborhood information can
be extended from neighborhood connectivity to neighborhood efficiency with respect to
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the exchange information. In such case, the rth neighborhood of node i (Γr(i)) is the
subgraph Si

r containing all vertices in the network at a shortest distance less or equal to r
from i inclusive:

Si
r = Γr(i) (13)

In this direction, Stephenson and Zelen [Stephenson 1989] introduced a measure
to compute the information centrality which considers the information contained in all
possible combined paths between pairs of points. In addition, they developed a straight-
forward way to calculate this information for large networks. Furthermore the measure
can be used for topological and weighted graphs without extra effort. The focus is not
in centrality measures, but the computation of combined path information, which is inte-
grated to computation of the information centrality, can be quite interesting to be applied
in order to detect network changes.

Consider a network as a graph G = (N, L) given by a set of nodes N = 1, 2, . . . , n
and a set of links L ⊂ N ∗ N , represented by using two n × n matrices. The first is the
adjacency matrix, denoted by M , such that mij = 1 if(i, j) ∈ L and otherwise, 0. The
second is the weight matrix denoted by W , such that wij is the weight associated with
each link. The value of the information in the combined path from node i to j is given by
[Stephenson 1989]:

Iij = (Cii + Cjj + 2Cij)
−1 (14)

Where C is B−1 and B is a matrix n× n defined by:

B =





bij = 1 if there is no path between i and j
bij = 0 if there is a path between i and j

bii = 1 +
n∑

j=1,j 6=i
(wij ∗mij)

Therefore, the matrix I obtained from (14) contains the combined path between
all the nodes in the graph. If the scale change from global to local, the concept of infor-
mation flow may be applied to neighborhood information, in other words, to support the
computation of information that is flowing in the neighborhood of a node. Using the pre-
viously concept of subgraph Si

r to represent the neighborhood of node i, the neighborhood
information of node i is the sum of the information flow in all possible paths:

NIi
r

=
∑

l

∑

j>l

Iij wh {l, j : l, j ∈ Si
r} (15)

Figures 5 and 6 summarize the performance of NIi
r
. The results show a high recall

and a high precision in all network topologies when changes in network were caused by
attacks. In these cases, all the scores were almost 1 for precision (precision ↓ and ↑ ∼= 1).
This ensures the reliability of the obtained information. Even if not all nodes do capture
the global efficiency, the information reliability regarding the detection of the efficiency
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Figure 5. NIi
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recall and precision - weighted networks.

variation might allow for the development of mechanisms to support network elements to
take advantage of network status.

In case of changes driven by failure, when global efficiency increases the pre-
cision was high (precision ↓ ∼= 1), because of a path was created between nodes with
high degree and low centrality, that is, the change could be better disseminated. On
the other hand, the precision regarding detection of global efficiency is not as high
(precision ↓≈ 0.6) for all topologies. This happens because failures may occur at the
edge of the network. Even so, the obtained scores are significant since they were much
better than the obtained from local efficiency (4), information based on degree (12) or
global metrics. Notice that the results obtained with topological networks (Figure 6)
were very similar to those obtained in weighted networks (Figure 5). This means that the
neighborhood information is efficient to capture the topological changes, independent of
the node connection intensity.

The results obtained by this measure are clearly dependent on the parameter r.
However, despite the average characteristic path length (L) of the used networks being
2.3 (SF), 2.4 (SW) and 2.6 (Random), to detect network changes it would be necessary to
compute the global efficiency over the entire network. Whether we consider that the size
of subgraph Si

r (neighborhood r of node i) is between 8 and 62 nodes for SF networks (an
average of 30) or 13 and 28 (an average of 17) for SW, less effort is required to estimate
global changes.

Figure 7 shows the results obtained from the average of five networks with N =
1000, M ∼ 3000 and 〈k〉 ∼ 6, with average characteristic path length (L) 4 for random
networks, 5 for SW networks and 6.74 for SF networks. As can be noted, despite the
network size and L having increased and the value of parameter r remaining the same
(r = 2) from previous experiments, the obtained results were also significant for all
topologies. For example, in SF networks for both BC and DC attacks the precision is
almost the same, while the recall decreases from 0.96 to 0.87 for BC and from 0.98 to 0.92
for DC. On the other hand, for failures precision decreases from 0.99 to 0.89, but recall
increases 0.05. Concerning the size of subgraphs Si

r, the of number of nodes decreased
from the entire network to a range of 11 to 122 (and an average of 40) for SF and a range
of 11 to 34 (and an average of 16) for SW, the relative radius of the subgraph decreased.
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The results show that a node can be ”aware” of fluctuations in network perfor-
mance. Changes in patterns may indicate problems in network dynamic, when the ef-
ficiency drops consecutively, or even opportunities to perform specific tasks. They also
demonstrate that if most nodes could be ”aware” of changes, the computation might only
be performed in some specific nodes. In this sense, preliminaries analysis shown that spe-
cific nodes are more sensitive to capture not only the tendency of the network efficiency,
but also are able to estimate of how much was this change, more specifically ranges of
changes. However, the approach emphasizes the use of local metrics which makes more
complex the characterization of such nodes.

5. Conclusions

The obtained results from NIi
r

encourage good prospects. This metric showed better re-
sults when considering local efficiency, centrality measures and neighborhood connectiv-
ity. Similar results for topological and weighted networks showed that the neighborhood
information captures not only the topological changes, but also the real efficiency of paths
in the network. Furthermore, the neighborhood information precision is higher than what
is obtained from other classical metrics, and the high number of nodes that can properly
capture global changes allows the development of methods considering only a few nodes
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to perform this task. Thus, the metric can evolve or be combined to others in order to
reach a robust method to detect global changes using local information.

New experiments must be done in order to evaluate real behavior for different
network sizes. However, it is important to note that complex real networks are naturally
organized in order to maintain a small characteristic path length, which usually grows at
logarithmical rate, rather than exponential.

We are currently working on two main issues. The first one is investigating
whether it is possible to classify nodes with respect to its accuracy in detecting global
changes considering NIi

r
, as well as the number of nodes that must be considered in order

to obtain the best performance. The second is to combine NIi
r

and density measures to
detect the probability that some node gets disconnected from the network, in other words,
if the current network state can be harmful to network stability.
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